Metamath Proof Explorer
Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996)
|
|
Ref |
Expression |
|
Hypotheses |
gencl.1 |
⊢ ( 𝜃 ↔ ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝐵 ) ) |
|
|
gencl.2 |
⊢ ( 𝐴 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
gencl.3 |
⊢ ( 𝜒 → 𝜑 ) |
|
Assertion |
gencl |
⊢ ( 𝜃 → 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gencl.1 |
⊢ ( 𝜃 ↔ ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝐵 ) ) |
| 2 |
|
gencl.2 |
⊢ ( 𝐴 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
gencl.3 |
⊢ ( 𝜒 → 𝜑 ) |
| 4 |
3 2
|
imbitrid |
⊢ ( 𝐴 = 𝐵 → ( 𝜒 → 𝜓 ) ) |
| 5 |
4
|
impcom |
⊢ ( ( 𝜒 ∧ 𝐴 = 𝐵 ) → 𝜓 ) |
| 6 |
5
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝐵 ) → 𝜓 ) |
| 7 |
1 6
|
sylbi |
⊢ ( 𝜃 → 𝜓 ) |