Metamath Proof Explorer


Theorem simplbi2

Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011)

Ref Expression
Hypothesis simplbi2.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
Assertion simplbi2 ( 𝜓 → ( 𝜒𝜑 ) )

Proof

Step Hyp Ref Expression
1 simplbi2.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 1 biimpri ( ( 𝜓𝜒 ) → 𝜑 )
3 2 ex ( 𝜓 → ( 𝜒𝜑 ) )