Metamath Proof Explorer


Theorem adantrd

Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994)

Ref Expression
Hypothesis adantrd.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion adantrd ( 𝜑 → ( ( 𝜓𝜃 ) → 𝜒 ) )

Proof

Step Hyp Ref Expression
1 adantrd.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 simpl ( ( 𝜓𝜃 ) → 𝜓 )
3 2 1 syl5 ( 𝜑 → ( ( 𝜓𝜃 ) → 𝜒 ) )