Metamath Proof Explorer


Theorem noel

Description: The empty set has no elements. Theorem 6.14 of Quine p. 44. (Contributed by NM, 21-Jun-1993) (Proof shortened by Mario Carneiro, 1-Sep-2015) Remove dependency on ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 3-May-2023) (Proof shortened by BJ, 23-Sep-2024)

Ref Expression
Assertion noel ¬ 𝐴 ∈ ∅

Proof

Step Hyp Ref Expression
1 nsb ( ∀ 𝑦 ¬ ⊥ → ¬ [ 𝑥 / 𝑦 ] ⊥ )
2 fal ¬ ⊥
3 1 2 mpg ¬ [ 𝑥 / 𝑦 ] ⊥
4 dfnul4 ∅ = { 𝑦 ∣ ⊥ }
5 4 eleq2i ( 𝑥 ∈ ∅ ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } )
6 df-clab ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ [ 𝑥 / 𝑦 ] ⊥ )
7 5 6 bitri ( 𝑥 ∈ ∅ ↔ [ 𝑥 / 𝑦 ] ⊥ )
8 3 7 mtbir ¬ 𝑥 ∈ ∅
9 8 intnan ¬ ( 𝑥 = 𝐴𝑥 ∈ ∅ )
10 9 nex ¬ ∃ 𝑥 ( 𝑥 = 𝐴𝑥 ∈ ∅ )
11 dfclel ( 𝐴 ∈ ∅ ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑥 ∈ ∅ ) )
12 10 11 mtbir ¬ 𝐴 ∈ ∅