Metamath Proof Explorer


Theorem noelOLD

Description: Obsolete version of noel as of 18-Sep-2024. (Contributed by NM, 21-Jun-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion noelOLD ¬ 𝐴 ∈ ∅

Proof

Step Hyp Ref Expression
1 pm3.24 ¬ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V )
2 1 nex ¬ ∃ 𝑦 ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V )
3 df-clab ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) } ↔ [ 𝑥 / 𝑦 ] ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) )
4 spsbe ( [ 𝑥 / 𝑦 ] ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) → ∃ 𝑦 ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) )
5 3 4 sylbi ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) } → ∃ 𝑦 ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) )
6 2 5 mto ¬ 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) }
7 df-nul ∅ = ( V ∖ V )
8 df-dif ( V ∖ V ) = { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) }
9 7 8 eqtri ∅ = { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) }
10 9 eleq2i ( 𝑥 ∈ ∅ ↔ 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) } )
11 6 10 mtbir ¬ 𝑥 ∈ ∅
12 11 intnan ¬ ( 𝑥 = 𝐴𝑥 ∈ ∅ )
13 12 nex ¬ ∃ 𝑥 ( 𝑥 = 𝐴𝑥 ∈ ∅ )
14 dfclel ( 𝐴 ∈ ∅ ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑥 ∈ ∅ ) )
15 13 14 mtbir ¬ 𝐴 ∈ ∅