Metamath Proof Explorer


Theorem noelOLD

Description: Obsolete version of noel as of 18-Sep-2024. (Contributed by NM, 21-Jun-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion noelOLD ¬A

Proof

Step Hyp Ref Expression
1 pm3.24 ¬yV¬yV
2 1 nex ¬yyV¬yV
3 df-clab xy|yV¬yVxyyV¬yV
4 spsbe xyyV¬yVyyV¬yV
5 3 4 sylbi xy|yV¬yVyyV¬yV
6 2 5 mto ¬xy|yV¬yV
7 df-nul =VV
8 df-dif VV=y|yV¬yV
9 7 8 eqtri =y|yV¬yV
10 9 eleq2i xxy|yV¬yV
11 6 10 mtbir ¬x
12 11 intnan ¬x=Ax
13 12 nex ¬xx=Ax
14 dfclel Axx=Ax
15 13 14 mtbir ¬A