Metamath Proof Explorer


Theorem ltpiord

Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion ltpiord A𝑵B𝑵A<𝑵BAB

Proof

Step Hyp Ref Expression
1 df-lti <𝑵=E𝑵×𝑵
2 1 breqi A<𝑵BAE𝑵×𝑵B
3 brinxp A𝑵B𝑵AEBAE𝑵×𝑵B
4 epelg B𝑵AEBAB
5 4 adantl A𝑵B𝑵AEBAB
6 3 5 bitr3d A𝑵B𝑵AE𝑵×𝑵BAB
7 2 6 bitrid A𝑵B𝑵A<𝑵BAB