Metamath Proof Explorer


Theorem brinxp

Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997)

Ref Expression
Assertion brinxp ACBDARBARC×DB

Proof

Step Hyp Ref Expression
1 brinxp2 ARC×DBACBDARB
2 1 baibr ACBDARBARC×DB