Metamath Proof Explorer


Theorem axcnre

Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of Gleason p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre . (Contributed by NM, 13-May-1996) (New usage is discouraged.)

Ref Expression
Assertion axcnre A x y A = x + i y

Proof

Step Hyp Ref Expression
1 df-c = 𝑹 × 𝑹
2 eqeq1 z w = A z w = x + i y A = x + i y
3 2 2rexbidv z w = A x y z w = x + i y x y A = x + i y
4 opelreal z 0 𝑹 z 𝑹
5 opelreal w 0 𝑹 w 𝑹
6 4 5 anbi12i z 0 𝑹 w 0 𝑹 z 𝑹 w 𝑹
7 6 biimpri z 𝑹 w 𝑹 z 0 𝑹 w 0 𝑹
8 df-i i = 0 𝑹 1 𝑹
9 8 oveq1i i w 0 𝑹 = 0 𝑹 1 𝑹 w 0 𝑹
10 0r 0 𝑹 𝑹
11 1sr 1 𝑹 𝑹
12 mulcnsr 0 𝑹 𝑹 1 𝑹 𝑹 w 𝑹 0 𝑹 𝑹 0 𝑹 1 𝑹 w 0 𝑹 = 0 𝑹 𝑹 w + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 1 𝑹 𝑹 w + 𝑹 0 𝑹 𝑹 0 𝑹
13 10 11 12 mpanl12 w 𝑹 0 𝑹 𝑹 0 𝑹 1 𝑹 w 0 𝑹 = 0 𝑹 𝑹 w + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 1 𝑹 𝑹 w + 𝑹 0 𝑹 𝑹 0 𝑹
14 10 13 mpan2 w 𝑹 0 𝑹 1 𝑹 w 0 𝑹 = 0 𝑹 𝑹 w + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 1 𝑹 𝑹 w + 𝑹 0 𝑹 𝑹 0 𝑹
15 mulcomsr 0 𝑹 𝑹 w = w 𝑹 0 𝑹
16 00sr w 𝑹 w 𝑹 0 𝑹 = 0 𝑹
17 15 16 syl5eq w 𝑹 0 𝑹 𝑹 w = 0 𝑹
18 17 oveq1d w 𝑹 0 𝑹 𝑹 w + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 = 0 𝑹 + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹
19 00sr 1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 = 0 𝑹
20 11 19 ax-mp 1 𝑹 𝑹 0 𝑹 = 0 𝑹
21 20 oveq2i -1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 = -1 𝑹 𝑹 0 𝑹
22 m1r -1 𝑹 𝑹
23 00sr -1 𝑹 𝑹 -1 𝑹 𝑹 0 𝑹 = 0 𝑹
24 22 23 ax-mp -1 𝑹 𝑹 0 𝑹 = 0 𝑹
25 21 24 eqtri -1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 = 0 𝑹
26 25 oveq2i 0 𝑹 + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 = 0 𝑹 + 𝑹 0 𝑹
27 0idsr 0 𝑹 𝑹 0 𝑹 + 𝑹 0 𝑹 = 0 𝑹
28 10 27 ax-mp 0 𝑹 + 𝑹 0 𝑹 = 0 𝑹
29 26 28 eqtri 0 𝑹 + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 = 0 𝑹
30 18 29 syl6eq w 𝑹 0 𝑹 𝑹 w + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 = 0 𝑹
31 mulcomsr 1 𝑹 𝑹 w = w 𝑹 1 𝑹
32 1idsr w 𝑹 w 𝑹 1 𝑹 = w
33 31 32 syl5eq w 𝑹 1 𝑹 𝑹 w = w
34 33 oveq1d w 𝑹 1 𝑹 𝑹 w + 𝑹 0 𝑹 𝑹 0 𝑹 = w + 𝑹 0 𝑹 𝑹 0 𝑹
35 00sr 0 𝑹 𝑹 0 𝑹 𝑹 0 𝑹 = 0 𝑹
36 10 35 ax-mp 0 𝑹 𝑹 0 𝑹 = 0 𝑹
37 36 oveq2i w + 𝑹 0 𝑹 𝑹 0 𝑹 = w + 𝑹 0 𝑹
38 0idsr w 𝑹 w + 𝑹 0 𝑹 = w
39 37 38 syl5eq w 𝑹 w + 𝑹 0 𝑹 𝑹 0 𝑹 = w
40 34 39 eqtrd w 𝑹 1 𝑹 𝑹 w + 𝑹 0 𝑹 𝑹 0 𝑹 = w
41 30 40 opeq12d w 𝑹 0 𝑹 𝑹 w + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 1 𝑹 𝑹 w + 𝑹 0 𝑹 𝑹 0 𝑹 = 0 𝑹 w
42 14 41 eqtrd w 𝑹 0 𝑹 1 𝑹 w 0 𝑹 = 0 𝑹 w
43 9 42 syl5eq w 𝑹 i w 0 𝑹 = 0 𝑹 w
44 43 oveq2d w 𝑹 z 0 𝑹 + i w 0 𝑹 = z 0 𝑹 + 0 𝑹 w
45 44 adantl z 𝑹 w 𝑹 z 0 𝑹 + i w 0 𝑹 = z 0 𝑹 + 0 𝑹 w
46 addcnsr z 𝑹 0 𝑹 𝑹 0 𝑹 𝑹 w 𝑹 z 0 𝑹 + 0 𝑹 w = z + 𝑹 0 𝑹 0 𝑹 + 𝑹 w
47 10 46 mpanl2 z 𝑹 0 𝑹 𝑹 w 𝑹 z 0 𝑹 + 0 𝑹 w = z + 𝑹 0 𝑹 0 𝑹 + 𝑹 w
48 10 47 mpanr1 z 𝑹 w 𝑹 z 0 𝑹 + 0 𝑹 w = z + 𝑹 0 𝑹 0 𝑹 + 𝑹 w
49 0idsr z 𝑹 z + 𝑹 0 𝑹 = z
50 addcomsr 0 𝑹 + 𝑹 w = w + 𝑹 0 𝑹
51 50 38 syl5eq w 𝑹 0 𝑹 + 𝑹 w = w
52 opeq12 z + 𝑹 0 𝑹 = z 0 𝑹 + 𝑹 w = w z + 𝑹 0 𝑹 0 𝑹 + 𝑹 w = z w
53 49 51 52 syl2an z 𝑹 w 𝑹 z + 𝑹 0 𝑹 0 𝑹 + 𝑹 w = z w
54 45 48 53 3eqtrrd z 𝑹 w 𝑹 z w = z 0 𝑹 + i w 0 𝑹
55 opex z 0 𝑹 V
56 opex w 0 𝑹 V
57 eleq1 x = z 0 𝑹 x z 0 𝑹
58 eleq1 y = w 0 𝑹 y w 0 𝑹
59 57 58 bi2anan9 x = z 0 𝑹 y = w 0 𝑹 x y z 0 𝑹 w 0 𝑹
60 oveq1 x = z 0 𝑹 x + i y = z 0 𝑹 + i y
61 oveq2 y = w 0 𝑹 i y = i w 0 𝑹
62 61 oveq2d y = w 0 𝑹 z 0 𝑹 + i y = z 0 𝑹 + i w 0 𝑹
63 60 62 sylan9eq x = z 0 𝑹 y = w 0 𝑹 x + i y = z 0 𝑹 + i w 0 𝑹
64 63 eqeq2d x = z 0 𝑹 y = w 0 𝑹 z w = x + i y z w = z 0 𝑹 + i w 0 𝑹
65 59 64 anbi12d x = z 0 𝑹 y = w 0 𝑹 x y z w = x + i y z 0 𝑹 w 0 𝑹 z w = z 0 𝑹 + i w 0 𝑹
66 55 56 65 spc2ev z 0 𝑹 w 0 𝑹 z w = z 0 𝑹 + i w 0 𝑹 x y x y z w = x + i y
67 7 54 66 syl2anc z 𝑹 w 𝑹 x y x y z w = x + i y
68 r2ex x y z w = x + i y x y x y z w = x + i y
69 67 68 sylibr z 𝑹 w 𝑹 x y z w = x + i y
70 1 3 69 optocl A x y A = x + i y