| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-c |
|
| 2 |
|
eqeq1 |
|
| 3 |
2
|
2rexbidv |
|
| 4 |
|
opelreal |
|
| 5 |
|
opelreal |
|
| 6 |
4 5
|
anbi12i |
|
| 7 |
6
|
biimpri |
|
| 8 |
|
df-i |
|
| 9 |
8
|
oveq1i |
|
| 10 |
|
0r |
|
| 11 |
|
1sr |
|
| 12 |
|
mulcnsr |
|
| 13 |
10 11 12
|
mpanl12 |
|
| 14 |
10 13
|
mpan2 |
|
| 15 |
|
mulcomsr |
|
| 16 |
|
00sr |
|
| 17 |
15 16
|
eqtrid |
|
| 18 |
17
|
oveq1d |
|
| 19 |
|
00sr |
|
| 20 |
11 19
|
ax-mp |
|
| 21 |
20
|
oveq2i |
|
| 22 |
|
m1r |
|
| 23 |
|
00sr |
|
| 24 |
22 23
|
ax-mp |
|
| 25 |
21 24
|
eqtri |
|
| 26 |
25
|
oveq2i |
|
| 27 |
|
0idsr |
|
| 28 |
10 27
|
ax-mp |
|
| 29 |
26 28
|
eqtri |
|
| 30 |
18 29
|
eqtrdi |
|
| 31 |
|
mulcomsr |
|
| 32 |
|
1idsr |
|
| 33 |
31 32
|
eqtrid |
|
| 34 |
33
|
oveq1d |
|
| 35 |
|
00sr |
|
| 36 |
10 35
|
ax-mp |
|
| 37 |
36
|
oveq2i |
|
| 38 |
|
0idsr |
|
| 39 |
37 38
|
eqtrid |
|
| 40 |
34 39
|
eqtrd |
|
| 41 |
30 40
|
opeq12d |
|
| 42 |
14 41
|
eqtrd |
|
| 43 |
9 42
|
eqtrid |
|
| 44 |
43
|
oveq2d |
|
| 45 |
44
|
adantl |
|
| 46 |
|
addcnsr |
|
| 47 |
10 46
|
mpanl2 |
|
| 48 |
10 47
|
mpanr1 |
|
| 49 |
|
0idsr |
|
| 50 |
|
addcomsr |
|
| 51 |
50 38
|
eqtrid |
|
| 52 |
|
opeq12 |
|
| 53 |
49 51 52
|
syl2an |
|
| 54 |
45 48 53
|
3eqtrrd |
|
| 55 |
|
opex |
|
| 56 |
|
opex |
|
| 57 |
|
eleq1 |
|
| 58 |
|
eleq1 |
|
| 59 |
57 58
|
bi2anan9 |
|
| 60 |
|
oveq1 |
|
| 61 |
|
oveq2 |
|
| 62 |
61
|
oveq2d |
|
| 63 |
60 62
|
sylan9eq |
|
| 64 |
63
|
eqeq2d |
|
| 65 |
59 64
|
anbi12d |
|
| 66 |
55 56 65
|
spc2ev |
|
| 67 |
7 54 66
|
syl2anc |
|
| 68 |
|
r2ex |
|
| 69 |
67 68
|
sylibr |
|
| 70 |
1 3 69
|
optocl |
|