Metamath Proof Explorer


Theorem axcnre

Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of Gleason p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre . (Contributed by NM, 13-May-1996) (New usage is discouraged.)

Ref Expression
Assertion axcnre AxyA=x+iy

Proof

Step Hyp Ref Expression
1 df-c =𝑹×𝑹
2 eqeq1 zw=Azw=x+iyA=x+iy
3 2 2rexbidv zw=Axyzw=x+iyxyA=x+iy
4 opelreal z0𝑹z𝑹
5 opelreal w0𝑹w𝑹
6 4 5 anbi12i z0𝑹w0𝑹z𝑹w𝑹
7 6 biimpri z𝑹w𝑹z0𝑹w0𝑹
8 df-i i=0𝑹1𝑹
9 8 oveq1i iw0𝑹=0𝑹1𝑹w0𝑹
10 0r 0𝑹𝑹
11 1sr 1𝑹𝑹
12 mulcnsr 0𝑹𝑹1𝑹𝑹w𝑹0𝑹𝑹0𝑹1𝑹w0𝑹=0𝑹𝑹w+𝑹-1𝑹𝑹1𝑹𝑹0𝑹1𝑹𝑹w+𝑹0𝑹𝑹0𝑹
13 10 11 12 mpanl12 w𝑹0𝑹𝑹0𝑹1𝑹w0𝑹=0𝑹𝑹w+𝑹-1𝑹𝑹1𝑹𝑹0𝑹1𝑹𝑹w+𝑹0𝑹𝑹0𝑹
14 10 13 mpan2 w𝑹0𝑹1𝑹w0𝑹=0𝑹𝑹w+𝑹-1𝑹𝑹1𝑹𝑹0𝑹1𝑹𝑹w+𝑹0𝑹𝑹0𝑹
15 mulcomsr 0𝑹𝑹w=w𝑹0𝑹
16 00sr w𝑹w𝑹0𝑹=0𝑹
17 15 16 eqtrid w𝑹0𝑹𝑹w=0𝑹
18 17 oveq1d w𝑹0𝑹𝑹w+𝑹-1𝑹𝑹1𝑹𝑹0𝑹=0𝑹+𝑹-1𝑹𝑹1𝑹𝑹0𝑹
19 00sr 1𝑹𝑹1𝑹𝑹0𝑹=0𝑹
20 11 19 ax-mp 1𝑹𝑹0𝑹=0𝑹
21 20 oveq2i -1𝑹𝑹1𝑹𝑹0𝑹=-1𝑹𝑹0𝑹
22 m1r -1𝑹𝑹
23 00sr -1𝑹𝑹-1𝑹𝑹0𝑹=0𝑹
24 22 23 ax-mp -1𝑹𝑹0𝑹=0𝑹
25 21 24 eqtri -1𝑹𝑹1𝑹𝑹0𝑹=0𝑹
26 25 oveq2i 0𝑹+𝑹-1𝑹𝑹1𝑹𝑹0𝑹=0𝑹+𝑹0𝑹
27 0idsr 0𝑹𝑹0𝑹+𝑹0𝑹=0𝑹
28 10 27 ax-mp 0𝑹+𝑹0𝑹=0𝑹
29 26 28 eqtri 0𝑹+𝑹-1𝑹𝑹1𝑹𝑹0𝑹=0𝑹
30 18 29 eqtrdi w𝑹0𝑹𝑹w+𝑹-1𝑹𝑹1𝑹𝑹0𝑹=0𝑹
31 mulcomsr 1𝑹𝑹w=w𝑹1𝑹
32 1idsr w𝑹w𝑹1𝑹=w
33 31 32 eqtrid w𝑹1𝑹𝑹w=w
34 33 oveq1d w𝑹1𝑹𝑹w+𝑹0𝑹𝑹0𝑹=w+𝑹0𝑹𝑹0𝑹
35 00sr 0𝑹𝑹0𝑹𝑹0𝑹=0𝑹
36 10 35 ax-mp 0𝑹𝑹0𝑹=0𝑹
37 36 oveq2i w+𝑹0𝑹𝑹0𝑹=w+𝑹0𝑹
38 0idsr w𝑹w+𝑹0𝑹=w
39 37 38 eqtrid w𝑹w+𝑹0𝑹𝑹0𝑹=w
40 34 39 eqtrd w𝑹1𝑹𝑹w+𝑹0𝑹𝑹0𝑹=w
41 30 40 opeq12d w𝑹0𝑹𝑹w+𝑹-1𝑹𝑹1𝑹𝑹0𝑹1𝑹𝑹w+𝑹0𝑹𝑹0𝑹=0𝑹w
42 14 41 eqtrd w𝑹0𝑹1𝑹w0𝑹=0𝑹w
43 9 42 eqtrid w𝑹iw0𝑹=0𝑹w
44 43 oveq2d w𝑹z0𝑹+iw0𝑹=z0𝑹+0𝑹w
45 44 adantl z𝑹w𝑹z0𝑹+iw0𝑹=z0𝑹+0𝑹w
46 addcnsr z𝑹0𝑹𝑹0𝑹𝑹w𝑹z0𝑹+0𝑹w=z+𝑹0𝑹0𝑹+𝑹w
47 10 46 mpanl2 z𝑹0𝑹𝑹w𝑹z0𝑹+0𝑹w=z+𝑹0𝑹0𝑹+𝑹w
48 10 47 mpanr1 z𝑹w𝑹z0𝑹+0𝑹w=z+𝑹0𝑹0𝑹+𝑹w
49 0idsr z𝑹z+𝑹0𝑹=z
50 addcomsr 0𝑹+𝑹w=w+𝑹0𝑹
51 50 38 eqtrid w𝑹0𝑹+𝑹w=w
52 opeq12 z+𝑹0𝑹=z0𝑹+𝑹w=wz+𝑹0𝑹0𝑹+𝑹w=zw
53 49 51 52 syl2an z𝑹w𝑹z+𝑹0𝑹0𝑹+𝑹w=zw
54 45 48 53 3eqtrrd z𝑹w𝑹zw=z0𝑹+iw0𝑹
55 opex z0𝑹V
56 opex w0𝑹V
57 eleq1 x=z0𝑹xz0𝑹
58 eleq1 y=w0𝑹yw0𝑹
59 57 58 bi2anan9 x=z0𝑹y=w0𝑹xyz0𝑹w0𝑹
60 oveq1 x=z0𝑹x+iy=z0𝑹+iy
61 oveq2 y=w0𝑹iy=iw0𝑹
62 61 oveq2d y=w0𝑹z0𝑹+iy=z0𝑹+iw0𝑹
63 60 62 sylan9eq x=z0𝑹y=w0𝑹x+iy=z0𝑹+iw0𝑹
64 63 eqeq2d x=z0𝑹y=w0𝑹zw=x+iyzw=z0𝑹+iw0𝑹
65 59 64 anbi12d x=z0𝑹y=w0𝑹xyzw=x+iyz0𝑹w0𝑹zw=z0𝑹+iw0𝑹
66 55 56 65 spc2ev z0𝑹w0𝑹zw=z0𝑹+iw0𝑹xyxyzw=x+iy
67 7 54 66 syl2anc z𝑹w𝑹xyxyzw=x+iy
68 r2ex xyzw=x+iyxyxyzw=x+iy
69 67 68 sylibr z𝑹w𝑹xyzw=x+iy
70 1 3 69 optocl AxyA=x+iy