Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of Gleason p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre . (Contributed by NM, 13-May-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axcnre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c | |
|
2 | eqeq1 | |
|
3 | 2 | 2rexbidv | |
4 | opelreal | |
|
5 | opelreal | |
|
6 | 4 5 | anbi12i | |
7 | 6 | biimpri | |
8 | df-i | |
|
9 | 8 | oveq1i | |
10 | 0r | |
|
11 | 1sr | |
|
12 | mulcnsr | |
|
13 | 10 11 12 | mpanl12 | |
14 | 10 13 | mpan2 | |
15 | mulcomsr | |
|
16 | 00sr | |
|
17 | 15 16 | eqtrid | |
18 | 17 | oveq1d | |
19 | 00sr | |
|
20 | 11 19 | ax-mp | |
21 | 20 | oveq2i | |
22 | m1r | |
|
23 | 00sr | |
|
24 | 22 23 | ax-mp | |
25 | 21 24 | eqtri | |
26 | 25 | oveq2i | |
27 | 0idsr | |
|
28 | 10 27 | ax-mp | |
29 | 26 28 | eqtri | |
30 | 18 29 | eqtrdi | |
31 | mulcomsr | |
|
32 | 1idsr | |
|
33 | 31 32 | eqtrid | |
34 | 33 | oveq1d | |
35 | 00sr | |
|
36 | 10 35 | ax-mp | |
37 | 36 | oveq2i | |
38 | 0idsr | |
|
39 | 37 38 | eqtrid | |
40 | 34 39 | eqtrd | |
41 | 30 40 | opeq12d | |
42 | 14 41 | eqtrd | |
43 | 9 42 | eqtrid | |
44 | 43 | oveq2d | |
45 | 44 | adantl | |
46 | addcnsr | |
|
47 | 10 46 | mpanl2 | |
48 | 10 47 | mpanr1 | |
49 | 0idsr | |
|
50 | addcomsr | |
|
51 | 50 38 | eqtrid | |
52 | opeq12 | |
|
53 | 49 51 52 | syl2an | |
54 | 45 48 53 | 3eqtrrd | |
55 | opex | |
|
56 | opex | |
|
57 | eleq1 | |
|
58 | eleq1 | |
|
59 | 57 58 | bi2anan9 | |
60 | oveq1 | |
|
61 | oveq2 | |
|
62 | 61 | oveq2d | |
63 | 60 62 | sylan9eq | |
64 | 63 | eqeq2d | |
65 | 59 64 | anbi12d | |
66 | 55 56 65 | spc2ev | |
67 | 7 54 66 | syl2anc | |
68 | r2ex | |
|
69 | 67 68 | sylibr | |
70 | 1 3 69 | optocl | |