Metamath Proof Explorer


Theorem 00sr

Description: A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion 00sr A𝑹A𝑹0𝑹=0𝑹

Proof

Step Hyp Ref Expression
1 df-nr 𝑹=𝑷×𝑷/~𝑹
2 oveq1 xy~𝑹=Axy~𝑹𝑹0𝑹=A𝑹0𝑹
3 2 eqeq1d xy~𝑹=Axy~𝑹𝑹0𝑹=0𝑹A𝑹0𝑹=0𝑹
4 1pr 1𝑷𝑷
5 mulsrpr x𝑷y𝑷1𝑷𝑷1𝑷𝑷xy~𝑹𝑹1𝑷1𝑷~𝑹=x𝑷1𝑷+𝑷y𝑷1𝑷x𝑷1𝑷+𝑷y𝑷1𝑷~𝑹
6 4 4 5 mpanr12 x𝑷y𝑷xy~𝑹𝑹1𝑷1𝑷~𝑹=x𝑷1𝑷+𝑷y𝑷1𝑷x𝑷1𝑷+𝑷y𝑷1𝑷~𝑹
7 mulclpr x𝑷1𝑷𝑷x𝑷1𝑷𝑷
8 4 7 mpan2 x𝑷x𝑷1𝑷𝑷
9 mulclpr y𝑷1𝑷𝑷y𝑷1𝑷𝑷
10 4 9 mpan2 y𝑷y𝑷1𝑷𝑷
11 addclpr x𝑷1𝑷𝑷y𝑷1𝑷𝑷x𝑷1𝑷+𝑷y𝑷1𝑷𝑷
12 8 10 11 syl2an x𝑷y𝑷x𝑷1𝑷+𝑷y𝑷1𝑷𝑷
13 12 12 anim12i x𝑷y𝑷x𝑷y𝑷x𝑷1𝑷+𝑷y𝑷1𝑷𝑷x𝑷1𝑷+𝑷y𝑷1𝑷𝑷
14 eqid x𝑷1𝑷+𝑷y𝑷1𝑷+𝑷1𝑷=x𝑷1𝑷+𝑷y𝑷1𝑷+𝑷1𝑷
15 enreceq x𝑷1𝑷+𝑷y𝑷1𝑷𝑷x𝑷1𝑷+𝑷y𝑷1𝑷𝑷1𝑷𝑷1𝑷𝑷x𝑷1𝑷+𝑷y𝑷1𝑷x𝑷1𝑷+𝑷y𝑷1𝑷~𝑹=1𝑷1𝑷~𝑹x𝑷1𝑷+𝑷y𝑷1𝑷+𝑷1𝑷=x𝑷1𝑷+𝑷y𝑷1𝑷+𝑷1𝑷
16 14 15 mpbiri x𝑷1𝑷+𝑷y𝑷1𝑷𝑷x𝑷1𝑷+𝑷y𝑷1𝑷𝑷1𝑷𝑷1𝑷𝑷x𝑷1𝑷+𝑷y𝑷1𝑷x𝑷1𝑷+𝑷y𝑷1𝑷~𝑹=1𝑷1𝑷~𝑹
17 13 16 sylan x𝑷y𝑷x𝑷y𝑷1𝑷𝑷1𝑷𝑷x𝑷1𝑷+𝑷y𝑷1𝑷x𝑷1𝑷+𝑷y𝑷1𝑷~𝑹=1𝑷1𝑷~𝑹
18 4 4 17 mpanr12 x𝑷y𝑷x𝑷y𝑷x𝑷1𝑷+𝑷y𝑷1𝑷x𝑷1𝑷+𝑷y𝑷1𝑷~𝑹=1𝑷1𝑷~𝑹
19 18 anidms x𝑷y𝑷x𝑷1𝑷+𝑷y𝑷1𝑷x𝑷1𝑷+𝑷y𝑷1𝑷~𝑹=1𝑷1𝑷~𝑹
20 6 19 eqtrd x𝑷y𝑷xy~𝑹𝑹1𝑷1𝑷~𝑹=1𝑷1𝑷~𝑹
21 df-0r 0𝑹=1𝑷1𝑷~𝑹
22 21 oveq2i xy~𝑹𝑹0𝑹=xy~𝑹𝑹1𝑷1𝑷~𝑹
23 20 22 21 3eqtr4g x𝑷y𝑷xy~𝑹𝑹0𝑹=0𝑹
24 1 3 23 ecoptocl A𝑹A𝑹0𝑹=0𝑹