Metamath Proof Explorer


Theorem ltasr

Description: Ordering property of addition. (Contributed by NM, 10-May-1996) (New usage is discouraged.)

Ref Expression
Assertion ltasr C𝑹A<𝑹BC+𝑹A<𝑹C+𝑹B

Proof

Step Hyp Ref Expression
1 dmaddsr dom+𝑹=𝑹×𝑹
2 ltrelsr <𝑹𝑹×𝑹
3 0nsr ¬𝑹
4 df-nr 𝑹=𝑷×𝑷/~𝑹
5 oveq1 vu~𝑹=Cvu~𝑹+𝑹xy~𝑹=C+𝑹xy~𝑹
6 oveq1 vu~𝑹=Cvu~𝑹+𝑹zw~𝑹=C+𝑹zw~𝑹
7 5 6 breq12d vu~𝑹=Cvu~𝑹+𝑹xy~𝑹<𝑹vu~𝑹+𝑹zw~𝑹C+𝑹xy~𝑹<𝑹C+𝑹zw~𝑹
8 7 bibi2d vu~𝑹=Cxy~𝑹<𝑹zw~𝑹vu~𝑹+𝑹xy~𝑹<𝑹vu~𝑹+𝑹zw~𝑹xy~𝑹<𝑹zw~𝑹C+𝑹xy~𝑹<𝑹C+𝑹zw~𝑹
9 breq1 xy~𝑹=Axy~𝑹<𝑹zw~𝑹A<𝑹zw~𝑹
10 oveq2 xy~𝑹=AC+𝑹xy~𝑹=C+𝑹A
11 10 breq1d xy~𝑹=AC+𝑹xy~𝑹<𝑹C+𝑹zw~𝑹C+𝑹A<𝑹C+𝑹zw~𝑹
12 9 11 bibi12d xy~𝑹=Axy~𝑹<𝑹zw~𝑹C+𝑹xy~𝑹<𝑹C+𝑹zw~𝑹A<𝑹zw~𝑹C+𝑹A<𝑹C+𝑹zw~𝑹
13 breq2 zw~𝑹=BA<𝑹zw~𝑹A<𝑹B
14 oveq2 zw~𝑹=BC+𝑹zw~𝑹=C+𝑹B
15 14 breq2d zw~𝑹=BC+𝑹A<𝑹C+𝑹zw~𝑹C+𝑹A<𝑹C+𝑹B
16 13 15 bibi12d zw~𝑹=BA<𝑹zw~𝑹C+𝑹A<𝑹C+𝑹zw~𝑹A<𝑹BC+𝑹A<𝑹C+𝑹B
17 addclpr v𝑷u𝑷v+𝑷u𝑷
18 17 3ad2ant1 v𝑷u𝑷x𝑷y𝑷z𝑷w𝑷v+𝑷u𝑷
19 ltapr v+𝑷u𝑷x+𝑷w<𝑷y+𝑷zv+𝑷u+𝑷x+𝑷w<𝑷v+𝑷u+𝑷y+𝑷z
20 ltsrpr xy~𝑹<𝑹zw~𝑹x+𝑷w<𝑷y+𝑷z
21 ltsrpr v+𝑷xu+𝑷y~𝑹<𝑹v+𝑷zu+𝑷w~𝑹v+𝑷x+𝑷u+𝑷w<𝑷u+𝑷y+𝑷v+𝑷z
22 vex vV
23 vex xV
24 vex uV
25 addcompr y+𝑷z=z+𝑷y
26 addasspr y+𝑷z+𝑷f=y+𝑷z+𝑷f
27 vex wV
28 22 23 24 25 26 27 caov4 v+𝑷x+𝑷u+𝑷w=v+𝑷u+𝑷x+𝑷w
29 addcompr u+𝑷y+𝑷v+𝑷z=v+𝑷z+𝑷u+𝑷y
30 vex zV
31 addcompr x+𝑷w=w+𝑷x
32 addasspr x+𝑷w+𝑷f=x+𝑷w+𝑷f
33 vex yV
34 22 30 24 31 32 33 caov42 v+𝑷z+𝑷u+𝑷y=v+𝑷u+𝑷y+𝑷z
35 29 34 eqtri u+𝑷y+𝑷v+𝑷z=v+𝑷u+𝑷y+𝑷z
36 28 35 breq12i v+𝑷x+𝑷u+𝑷w<𝑷u+𝑷y+𝑷v+𝑷zv+𝑷u+𝑷x+𝑷w<𝑷v+𝑷u+𝑷y+𝑷z
37 21 36 bitri v+𝑷xu+𝑷y~𝑹<𝑹v+𝑷zu+𝑷w~𝑹v+𝑷u+𝑷x+𝑷w<𝑷v+𝑷u+𝑷y+𝑷z
38 19 20 37 3bitr4g v+𝑷u𝑷xy~𝑹<𝑹zw~𝑹v+𝑷xu+𝑷y~𝑹<𝑹v+𝑷zu+𝑷w~𝑹
39 18 38 syl v𝑷u𝑷x𝑷y𝑷z𝑷w𝑷xy~𝑹<𝑹zw~𝑹v+𝑷xu+𝑷y~𝑹<𝑹v+𝑷zu+𝑷w~𝑹
40 addsrpr v𝑷u𝑷x𝑷y𝑷vu~𝑹+𝑹xy~𝑹=v+𝑷xu+𝑷y~𝑹
41 40 3adant3 v𝑷u𝑷x𝑷y𝑷z𝑷w𝑷vu~𝑹+𝑹xy~𝑹=v+𝑷xu+𝑷y~𝑹
42 addsrpr v𝑷u𝑷z𝑷w𝑷vu~𝑹+𝑹zw~𝑹=v+𝑷zu+𝑷w~𝑹
43 42 3adant2 v𝑷u𝑷x𝑷y𝑷z𝑷w𝑷vu~𝑹+𝑹zw~𝑹=v+𝑷zu+𝑷w~𝑹
44 41 43 breq12d v𝑷u𝑷x𝑷y𝑷z𝑷w𝑷vu~𝑹+𝑹xy~𝑹<𝑹vu~𝑹+𝑹zw~𝑹v+𝑷xu+𝑷y~𝑹<𝑹v+𝑷zu+𝑷w~𝑹
45 39 44 bitr4d v𝑷u𝑷x𝑷y𝑷z𝑷w𝑷xy~𝑹<𝑹zw~𝑹vu~𝑹+𝑹xy~𝑹<𝑹vu~𝑹+𝑹zw~𝑹
46 4 8 12 16 45 3ecoptocl C𝑹A𝑹B𝑹A<𝑹BC+𝑹A<𝑹C+𝑹B
47 46 3coml A𝑹B𝑹C𝑹A<𝑹BC+𝑹A<𝑹C+𝑹B
48 1 2 3 47 ndmovord C𝑹A<𝑹BC+𝑹A<𝑹C+𝑹B