Metamath Proof Explorer


Theorem pn0sr

Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996) (New usage is discouraged.)

Ref Expression
Assertion pn0sr A𝑹A+𝑹A𝑹-1𝑹=0𝑹

Proof

Step Hyp Ref Expression
1 1idsr A𝑹A𝑹1𝑹=A
2 1 oveq1d A𝑹A𝑹1𝑹+𝑹A𝑹-1𝑹=A+𝑹A𝑹-1𝑹
3 distrsr A𝑹-1𝑹+𝑹1𝑹=A𝑹-1𝑹+𝑹A𝑹1𝑹
4 m1p1sr -1𝑹+𝑹1𝑹=0𝑹
5 4 oveq2i A𝑹-1𝑹+𝑹1𝑹=A𝑹0𝑹
6 addcomsr A𝑹-1𝑹+𝑹A𝑹1𝑹=A𝑹1𝑹+𝑹A𝑹-1𝑹
7 3 5 6 3eqtr3i A𝑹0𝑹=A𝑹1𝑹+𝑹A𝑹-1𝑹
8 00sr A𝑹A𝑹0𝑹=0𝑹
9 7 8 eqtr3id A𝑹A𝑹1𝑹+𝑹A𝑹-1𝑹=0𝑹
10 2 9 eqtr3d A𝑹A+𝑹A𝑹-1𝑹=0𝑹