| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1idsr | 
							⊢ ( 𝐴  ∈  R  →  ( 𝐴  ·R  1R )  =  𝐴 )  | 
						
						
							| 2 | 
							
								1
							 | 
							oveq1d | 
							⊢ ( 𝐴  ∈  R  →  ( ( 𝐴  ·R  1R )  +R  ( 𝐴  ·R  -1R ) )  =  ( 𝐴  +R  ( 𝐴  ·R  -1R ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							distrsr | 
							⊢ ( 𝐴  ·R  ( -1R  +R  1R ) )  =  ( ( 𝐴  ·R  -1R )  +R  ( 𝐴  ·R  1R ) )  | 
						
						
							| 4 | 
							
								
							 | 
							m1p1sr | 
							⊢ ( -1R  +R  1R )  =  0R  | 
						
						
							| 5 | 
							
								4
							 | 
							oveq2i | 
							⊢ ( 𝐴  ·R  ( -1R  +R  1R ) )  =  ( 𝐴  ·R  0R )  | 
						
						
							| 6 | 
							
								
							 | 
							addcomsr | 
							⊢ ( ( 𝐴  ·R  -1R )  +R  ( 𝐴  ·R  1R ) )  =  ( ( 𝐴  ·R  1R )  +R  ( 𝐴  ·R  -1R ) )  | 
						
						
							| 7 | 
							
								3 5 6
							 | 
							3eqtr3i | 
							⊢ ( 𝐴  ·R  0R )  =  ( ( 𝐴  ·R  1R )  +R  ( 𝐴  ·R  -1R ) )  | 
						
						
							| 8 | 
							
								
							 | 
							00sr | 
							⊢ ( 𝐴  ∈  R  →  ( 𝐴  ·R  0R )  =  0R )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtr3id | 
							⊢ ( 𝐴  ∈  R  →  ( ( 𝐴  ·R  1R )  +R  ( 𝐴  ·R  -1R ) )  =  0R )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							eqtr3d | 
							⊢ ( 𝐴  ∈  R  →  ( 𝐴  +R  ( 𝐴  ·R  -1R ) )  =  0R )  |