Metamath Proof Explorer


Theorem 00sr

Description: A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion 00sr ( 𝐴R → ( 𝐴 ·R 0R ) = 0R )

Proof

Step Hyp Ref Expression
1 df-nr R = ( ( P × P ) / ~R )
2 oveq1 ( [ ⟨ 𝑥 , 𝑦 ⟩ ] ~R = 𝐴 → ( [ ⟨ 𝑥 , 𝑦 ⟩ ] ~R ·R 0R ) = ( 𝐴 ·R 0R ) )
3 2 eqeq1d ( [ ⟨ 𝑥 , 𝑦 ⟩ ] ~R = 𝐴 → ( ( [ ⟨ 𝑥 , 𝑦 ⟩ ] ~R ·R 0R ) = 0R ↔ ( 𝐴 ·R 0R ) = 0R ) )
4 1pr 1PP
5 mulsrpr ( ( ( 𝑥P𝑦P ) ∧ ( 1PP ∧ 1PP ) ) → ( [ ⟨ 𝑥 , 𝑦 ⟩ ] ~R ·R [ ⟨ 1P , 1P ⟩ ] ~R ) = [ ⟨ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ⟩ ] ~R )
6 4 4 5 mpanr12 ( ( 𝑥P𝑦P ) → ( [ ⟨ 𝑥 , 𝑦 ⟩ ] ~R ·R [ ⟨ 1P , 1P ⟩ ] ~R ) = [ ⟨ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ⟩ ] ~R )
7 mulclpr ( ( 𝑥P ∧ 1PP ) → ( 𝑥 ·P 1P ) ∈ P )
8 4 7 mpan2 ( 𝑥P → ( 𝑥 ·P 1P ) ∈ P )
9 mulclpr ( ( 𝑦P ∧ 1PP ) → ( 𝑦 ·P 1P ) ∈ P )
10 4 9 mpan2 ( 𝑦P → ( 𝑦 ·P 1P ) ∈ P )
11 addclpr ( ( ( 𝑥 ·P 1P ) ∈ P ∧ ( 𝑦 ·P 1P ) ∈ P ) → ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P )
12 8 10 11 syl2an ( ( 𝑥P𝑦P ) → ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P )
13 12 12 anim12i ( ( ( 𝑥P𝑦P ) ∧ ( 𝑥P𝑦P ) ) → ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ∧ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ) )
14 eqid ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) +P 1P ) = ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) +P 1P )
15 enreceq ( ( ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ∧ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ) ∧ ( 1PP ∧ 1PP ) ) → ( [ ⟨ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ⟩ ] ~R = [ ⟨ 1P , 1P ⟩ ] ~R ↔ ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) +P 1P ) = ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) +P 1P ) ) )
16 14 15 mpbiri ( ( ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ∧ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ) ∧ ( 1PP ∧ 1PP ) ) → [ ⟨ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ⟩ ] ~R = [ ⟨ 1P , 1P ⟩ ] ~R )
17 13 16 sylan ( ( ( ( 𝑥P𝑦P ) ∧ ( 𝑥P𝑦P ) ) ∧ ( 1PP ∧ 1PP ) ) → [ ⟨ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ⟩ ] ~R = [ ⟨ 1P , 1P ⟩ ] ~R )
18 4 4 17 mpanr12 ( ( ( 𝑥P𝑦P ) ∧ ( 𝑥P𝑦P ) ) → [ ⟨ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ⟩ ] ~R = [ ⟨ 1P , 1P ⟩ ] ~R )
19 18 anidms ( ( 𝑥P𝑦P ) → [ ⟨ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ⟩ ] ~R = [ ⟨ 1P , 1P ⟩ ] ~R )
20 6 19 eqtrd ( ( 𝑥P𝑦P ) → ( [ ⟨ 𝑥 , 𝑦 ⟩ ] ~R ·R [ ⟨ 1P , 1P ⟩ ] ~R ) = [ ⟨ 1P , 1P ⟩ ] ~R )
21 df-0r 0R = [ ⟨ 1P , 1P ⟩ ] ~R
22 21 oveq2i ( [ ⟨ 𝑥 , 𝑦 ⟩ ] ~R ·R 0R ) = ( [ ⟨ 𝑥 , 𝑦 ⟩ ] ~R ·R [ ⟨ 1P , 1P ⟩ ] ~R )
23 20 22 21 3eqtr4g ( ( 𝑥P𝑦P ) → ( [ ⟨ 𝑥 , 𝑦 ⟩ ] ~R ·R 0R ) = 0R )
24 1 3 23 ecoptocl ( 𝐴R → ( 𝐴 ·R 0R ) = 0R )