Metamath Proof Explorer


Theorem mulsrpr

Description: Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)

Ref Expression
Assertion mulsrpr ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ·R [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R )

Proof

Step Hyp Ref Expression
1 opelxpi ( ( 𝐴P𝐵P ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( P × P ) )
2 enrex ~R ∈ V
3 2 ecelqsi ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( P × P ) → [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) )
4 1 3 syl ( ( 𝐴P𝐵P ) → [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) )
5 opelxpi ( ( 𝐶P𝐷P ) → ⟨ 𝐶 , 𝐷 ⟩ ∈ ( P × P ) )
6 2 ecelqsi ( ⟨ 𝐶 , 𝐷 ⟩ ∈ ( P × P ) → [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) )
7 5 6 syl ( ( 𝐶P𝐷P ) → [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) )
8 4 7 anim12i ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ) )
9 eqid [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R
10 eqid [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R
11 9 10 pm3.2i ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R )
12 eqid [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R
13 opeq12 ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ⟨ 𝑤 , 𝑣 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
14 13 eceq1d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R )
15 14 eqeq2d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ↔ [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ) )
16 15 anbi1d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ↔ ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ) )
17 simpl ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → 𝑤 = 𝐴 )
18 17 oveq1d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ( 𝑤 ·P 𝐶 ) = ( 𝐴 ·P 𝐶 ) )
19 simpr ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → 𝑣 = 𝐵 )
20 19 oveq1d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ( 𝑣 ·P 𝐷 ) = ( 𝐵 ·P 𝐷 ) )
21 18 20 oveq12d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) = ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) )
22 17 oveq1d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ( 𝑤 ·P 𝐷 ) = ( 𝐴 ·P 𝐷 ) )
23 19 oveq1d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ( 𝑣 ·P 𝐶 ) = ( 𝐵 ·P 𝐶 ) )
24 22 23 oveq12d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) = ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) )
25 21 24 opeq12d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ⟨ ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) , ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) ⟩ = ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ )
26 25 eceq1d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → [ ⟨ ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) , ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R )
27 26 eqeq2d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ( [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) , ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) ⟩ ] ~R ↔ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) )
28 16 27 anbi12d ( ( 𝑤 = 𝐴𝑣 = 𝐵 ) → ( ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) , ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) ⟩ ] ~R ) ↔ ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) ) )
29 28 spc2egv ( ( 𝐴P𝐵P ) → ( ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) → ∃ 𝑤𝑣 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) , ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) ⟩ ] ~R ) ) )
30 opeq12 ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ⟨ 𝑢 , 𝑡 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ )
31 30 eceq1d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R )
32 31 eqeq2d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ( [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ↔ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) )
33 32 anbi2d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ↔ ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ) )
34 simpl ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → 𝑢 = 𝐶 )
35 34 oveq2d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ( 𝑤 ·P 𝑢 ) = ( 𝑤 ·P 𝐶 ) )
36 simpr ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → 𝑡 = 𝐷 )
37 36 oveq2d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ( 𝑣 ·P 𝑡 ) = ( 𝑣 ·P 𝐷 ) )
38 35 37 oveq12d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) = ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) )
39 36 oveq2d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ( 𝑤 ·P 𝑡 ) = ( 𝑤 ·P 𝐷 ) )
40 34 oveq2d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ( 𝑣 ·P 𝑢 ) = ( 𝑣 ·P 𝐶 ) )
41 39 40 oveq12d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) = ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) )
42 38 41 opeq12d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ = ⟨ ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) , ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) ⟩ )
43 42 eceq1d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) , ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) ⟩ ] ~R )
44 43 eqeq2d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ( [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ↔ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) , ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) ⟩ ] ~R ) )
45 33 44 anbi12d ( ( 𝑢 = 𝐶𝑡 = 𝐷 ) → ( ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ↔ ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) , ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) ⟩ ] ~R ) ) )
46 45 spc2egv ( ( 𝐶P𝐷P ) → ( ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) , ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) ⟩ ] ~R ) → ∃ 𝑢𝑡 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) )
47 46 2eximdv ( ( 𝐶P𝐷P ) → ( ∃ 𝑤𝑣 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝐶 ) +P ( 𝑣 ·P 𝐷 ) ) , ( ( 𝑤 ·P 𝐷 ) +P ( 𝑣 ·P 𝐶 ) ) ⟩ ] ~R ) → ∃ 𝑤𝑣𝑢𝑡 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) )
48 29 47 sylan9 ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) → ( ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) → ∃ 𝑤𝑣𝑢𝑡 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) )
49 11 12 48 mp2ani ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) → ∃ 𝑤𝑣𝑢𝑡 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) )
50 ecexg ( ~R ∈ V → [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ∈ V )
51 2 50 ax-mp [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ∈ V
52 simp1 ( ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R𝑧 = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) → 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R )
53 52 eqeq1d ( ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R𝑧 = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) → ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ↔ [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ) )
54 simp2 ( ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R𝑧 = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) → 𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R )
55 54 eqeq1d ( ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R𝑧 = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) → ( 𝑦 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ↔ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) )
56 53 55 anbi12d ( ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R𝑧 = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) → ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ↔ ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ) )
57 simp3 ( ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R𝑧 = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) → 𝑧 = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R )
58 57 eqeq1d ( ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R𝑧 = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) → ( 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ↔ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) )
59 56 58 anbi12d ( ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R𝑧 = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) → ( ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ↔ ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) )
60 59 4exbidv ( ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R𝑧 = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) → ( ∃ 𝑤𝑣𝑢𝑡 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ↔ ∃ 𝑤𝑣𝑢𝑡 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) )
61 mulsrmo ( ( 𝑥 ∈ ( ( P × P ) / ~R ) ∧ 𝑦 ∈ ( ( P × P ) / ~R ) ) → ∃* 𝑧𝑤𝑣𝑢𝑡 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) )
62 df-mr ·R = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑡 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) }
63 df-nr R = ( ( P × P ) / ~R )
64 63 eleq2i ( 𝑥R𝑥 ∈ ( ( P × P ) / ~R ) )
65 63 eleq2i ( 𝑦R𝑦 ∈ ( ( P × P ) / ~R ) )
66 64 65 anbi12i ( ( 𝑥R𝑦R ) ↔ ( 𝑥 ∈ ( ( P × P ) / ~R ) ∧ 𝑦 ∈ ( ( P × P ) / ~R ) ) )
67 66 anbi1i ( ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑡 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) ↔ ( ( 𝑥 ∈ ( ( P × P ) / ~R ) ∧ 𝑦 ∈ ( ( P × P ) / ~R ) ) ∧ ∃ 𝑤𝑣𝑢𝑡 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) )
68 67 oprabbii { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑡 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ( ( P × P ) / ~R ) ∧ 𝑦 ∈ ( ( P × P ) / ~R ) ) ∧ ∃ 𝑤𝑣𝑢𝑡 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) }
69 62 68 eqtri ·R = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ( ( P × P ) / ~R ) ∧ 𝑦 ∈ ( ( P × P ) / ~R ) ) ∧ ∃ 𝑤𝑣𝑢𝑡 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) }
70 60 61 69 ovig ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ∈ V ) → ( ∃ 𝑤𝑣𝑢𝑡 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ·R [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) )
71 51 70 mp3an3 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ) → ( ∃ 𝑤𝑣𝑢𝑡 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑡 ) ) , ( ( 𝑤 ·P 𝑡 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ·R [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R ) )
72 8 49 71 sylc ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ·R [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) = [ ⟨ ( ( 𝐴 ·P 𝐶 ) +P ( 𝐵 ·P 𝐷 ) ) , ( ( 𝐴 ·P 𝐷 ) +P ( 𝐵 ·P 𝐶 ) ) ⟩ ] ~R )