| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovig.1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
ovig.2 |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → ∃* 𝑧 𝜑 ) |
| 3 |
|
ovig.3 |
⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝜑 ) } |
| 4 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐷 ) → ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) |
| 5 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑅 ↔ 𝐴 ∈ 𝑅 ) ) |
| 6 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆 ) ) |
| 7 |
5 6
|
bi2anan9 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) ) |
| 9 |
8 1
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝜑 ) ↔ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝜓 ) ) ) |
| 10 |
|
moanimv |
⊢ ( ∃* 𝑧 ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → ∃* 𝑧 𝜑 ) ) |
| 11 |
2 10
|
mpbir |
⊢ ∃* 𝑧 ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝜑 ) |
| 12 |
9 11 3
|
ovigg |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐷 ) → ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝜓 ) → ( 𝐴 𝐹 𝐵 ) = 𝐶 ) ) |
| 13 |
4 12
|
mpand |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐷 ) → ( 𝜓 → ( 𝐴 𝐹 𝐵 ) = 𝐶 ) ) |