Metamath Proof Explorer


Theorem ovigg

Description: The value of an operation class abstraction. Compared with ovig , the condition ( x e. R /\ y e. S ) is removed. (Contributed by FL, 24-Mar-2007) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses ovigg.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
ovigg.4 ∃* 𝑧 𝜑
ovigg.5 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 }
Assertion ovigg ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝜓 → ( 𝐴 𝐹 𝐵 ) = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ovigg.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
2 ovigg.4 ∃* 𝑧 𝜑
3 ovigg.5 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 }
4 1 eloprabga ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ↔ 𝜓 ) )
5 df-ov ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ )
6 3 fveq1i ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ‘ ⟨ 𝐴 , 𝐵 ⟩ )
7 5 6 eqtri ( 𝐴 𝐹 𝐵 ) = ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ‘ ⟨ 𝐴 , 𝐵 ⟩ )
8 2 funoprab Fun { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 }
9 funopfv ( Fun { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } → ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐶 ) )
10 8 9 ax-mp ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } → ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐶 )
11 7 10 eqtrid ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } → ( 𝐴 𝐹 𝐵 ) = 𝐶 )
12 4 11 syl6bir ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝜓 → ( 𝐴 𝐹 𝐵 ) = 𝐶 ) )