Metamath Proof Explorer


Theorem ovigg

Description: The value of an operation class abstraction. Compared with ovig , the condition ( x e. R /\ y e. S ) is removed. (Contributed by FL, 24-Mar-2007) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses ovigg.1 x = A y = B z = C φ ψ
ovigg.4 * z φ
ovigg.5 F = x y z | φ
Assertion ovigg A V B W C X ψ A F B = C

Proof

Step Hyp Ref Expression
1 ovigg.1 x = A y = B z = C φ ψ
2 ovigg.4 * z φ
3 ovigg.5 F = x y z | φ
4 1 eloprabga A V B W C X A B C x y z | φ ψ
5 df-ov A F B = F A B
6 3 fveq1i F A B = x y z | φ A B
7 5 6 eqtri A F B = x y z | φ A B
8 2 funoprab Fun x y z | φ
9 funopfv Fun x y z | φ A B C x y z | φ x y z | φ A B = C
10 8 9 ax-mp A B C x y z | φ x y z | φ A B = C
11 7 10 eqtrid A B C x y z | φ A F B = C
12 4 11 syl6bir A V B W C X ψ A F B = C