Metamath Proof Explorer


Theorem mulsrpr

Description: Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)

Ref Expression
Assertion mulsrpr
|- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( [ <. A , B >. ] ~R .R [ <. C , D >. ] ~R ) = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R )

Proof

Step Hyp Ref Expression
1 opelxpi
 |-  ( ( A e. P. /\ B e. P. ) -> <. A , B >. e. ( P. X. P. ) )
2 enrex
 |-  ~R e. _V
3 2 ecelqsi
 |-  ( <. A , B >. e. ( P. X. P. ) -> [ <. A , B >. ] ~R e. ( ( P. X. P. ) /. ~R ) )
4 1 3 syl
 |-  ( ( A e. P. /\ B e. P. ) -> [ <. A , B >. ] ~R e. ( ( P. X. P. ) /. ~R ) )
5 opelxpi
 |-  ( ( C e. P. /\ D e. P. ) -> <. C , D >. e. ( P. X. P. ) )
6 2 ecelqsi
 |-  ( <. C , D >. e. ( P. X. P. ) -> [ <. C , D >. ] ~R e. ( ( P. X. P. ) /. ~R ) )
7 5 6 syl
 |-  ( ( C e. P. /\ D e. P. ) -> [ <. C , D >. ] ~R e. ( ( P. X. P. ) /. ~R ) )
8 4 7 anim12i
 |-  ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( [ <. A , B >. ] ~R e. ( ( P. X. P. ) /. ~R ) /\ [ <. C , D >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) )
9 eqid
 |-  [ <. A , B >. ] ~R = [ <. A , B >. ] ~R
10 eqid
 |-  [ <. C , D >. ] ~R = [ <. C , D >. ] ~R
11 9 10 pm3.2i
 |-  ( [ <. A , B >. ] ~R = [ <. A , B >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R )
12 eqid
 |-  [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R
13 opeq12
 |-  ( ( w = A /\ v = B ) -> <. w , v >. = <. A , B >. )
14 13 eceq1d
 |-  ( ( w = A /\ v = B ) -> [ <. w , v >. ] ~R = [ <. A , B >. ] ~R )
15 14 eqeq2d
 |-  ( ( w = A /\ v = B ) -> ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R <-> [ <. A , B >. ] ~R = [ <. A , B >. ] ~R ) )
16 15 anbi1d
 |-  ( ( w = A /\ v = B ) -> ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) <-> ( [ <. A , B >. ] ~R = [ <. A , B >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) ) )
17 simpl
 |-  ( ( w = A /\ v = B ) -> w = A )
18 17 oveq1d
 |-  ( ( w = A /\ v = B ) -> ( w .P. C ) = ( A .P. C ) )
19 simpr
 |-  ( ( w = A /\ v = B ) -> v = B )
20 19 oveq1d
 |-  ( ( w = A /\ v = B ) -> ( v .P. D ) = ( B .P. D ) )
21 18 20 oveq12d
 |-  ( ( w = A /\ v = B ) -> ( ( w .P. C ) +P. ( v .P. D ) ) = ( ( A .P. C ) +P. ( B .P. D ) ) )
22 17 oveq1d
 |-  ( ( w = A /\ v = B ) -> ( w .P. D ) = ( A .P. D ) )
23 19 oveq1d
 |-  ( ( w = A /\ v = B ) -> ( v .P. C ) = ( B .P. C ) )
24 22 23 oveq12d
 |-  ( ( w = A /\ v = B ) -> ( ( w .P. D ) +P. ( v .P. C ) ) = ( ( A .P. D ) +P. ( B .P. C ) ) )
25 21 24 opeq12d
 |-  ( ( w = A /\ v = B ) -> <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. = <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. )
26 25 eceq1d
 |-  ( ( w = A /\ v = B ) -> [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R )
27 26 eqeq2d
 |-  ( ( w = A /\ v = B ) -> ( [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R <-> [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) )
28 16 27 anbi12d
 |-  ( ( w = A /\ v = B ) -> ( ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) <-> ( ( [ <. A , B >. ] ~R = [ <. A , B >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) ) )
29 28 spc2egv
 |-  ( ( A e. P. /\ B e. P. ) -> ( ( ( [ <. A , B >. ] ~R = [ <. A , B >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> E. w E. v ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) ) )
30 opeq12
 |-  ( ( u = C /\ t = D ) -> <. u , t >. = <. C , D >. )
31 30 eceq1d
 |-  ( ( u = C /\ t = D ) -> [ <. u , t >. ] ~R = [ <. C , D >. ] ~R )
32 31 eqeq2d
 |-  ( ( u = C /\ t = D ) -> ( [ <. C , D >. ] ~R = [ <. u , t >. ] ~R <-> [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) )
33 32 anbi2d
 |-  ( ( u = C /\ t = D ) -> ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) <-> ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) ) )
34 simpl
 |-  ( ( u = C /\ t = D ) -> u = C )
35 34 oveq2d
 |-  ( ( u = C /\ t = D ) -> ( w .P. u ) = ( w .P. C ) )
36 simpr
 |-  ( ( u = C /\ t = D ) -> t = D )
37 36 oveq2d
 |-  ( ( u = C /\ t = D ) -> ( v .P. t ) = ( v .P. D ) )
38 35 37 oveq12d
 |-  ( ( u = C /\ t = D ) -> ( ( w .P. u ) +P. ( v .P. t ) ) = ( ( w .P. C ) +P. ( v .P. D ) ) )
39 36 oveq2d
 |-  ( ( u = C /\ t = D ) -> ( w .P. t ) = ( w .P. D ) )
40 34 oveq2d
 |-  ( ( u = C /\ t = D ) -> ( v .P. u ) = ( v .P. C ) )
41 39 40 oveq12d
 |-  ( ( u = C /\ t = D ) -> ( ( w .P. t ) +P. ( v .P. u ) ) = ( ( w .P. D ) +P. ( v .P. C ) ) )
42 38 41 opeq12d
 |-  ( ( u = C /\ t = D ) -> <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. = <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. )
43 42 eceq1d
 |-  ( ( u = C /\ t = D ) -> [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R )
44 43 eqeq2d
 |-  ( ( u = C /\ t = D ) -> ( [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R <-> [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) )
45 33 44 anbi12d
 |-  ( ( u = C /\ t = D ) -> ( ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) ) )
46 45 spc2egv
 |-  ( ( C e. P. /\ D e. P. ) -> ( ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) -> E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) )
47 46 2eximdv
 |-  ( ( C e. P. /\ D e. P. ) -> ( E. w E. v ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) -> E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) )
48 29 47 sylan9
 |-  ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( ( ( [ <. A , B >. ] ~R = [ <. A , B >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) )
49 11 12 48 mp2ani
 |-  ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) )
50 ecexg
 |-  ( ~R e. _V -> [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R e. _V )
51 2 50 ax-mp
 |-  [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R e. _V
52 simp1
 |-  ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> x = [ <. A , B >. ] ~R )
53 52 eqeq1d
 |-  ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( x = [ <. w , v >. ] ~R <-> [ <. A , B >. ] ~R = [ <. w , v >. ] ~R ) )
54 simp2
 |-  ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> y = [ <. C , D >. ] ~R )
55 54 eqeq1d
 |-  ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( y = [ <. u , t >. ] ~R <-> [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) )
56 53 55 anbi12d
 |-  ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) <-> ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) ) )
57 simp3
 |-  ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R )
58 57 eqeq1d
 |-  ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R <-> [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) )
59 56 58 anbi12d
 |-  ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) )
60 59 4exbidv
 |-  ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) )
61 mulsrmo
 |-  ( ( x e. ( ( P. X. P. ) /. ~R ) /\ y e. ( ( P. X. P. ) /. ~R ) ) -> E* z E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) )
62 df-mr
 |-  .R = { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) }
63 df-nr
 |-  R. = ( ( P. X. P. ) /. ~R )
64 63 eleq2i
 |-  ( x e. R. <-> x e. ( ( P. X. P. ) /. ~R ) )
65 63 eleq2i
 |-  ( y e. R. <-> y e. ( ( P. X. P. ) /. ~R ) )
66 64 65 anbi12i
 |-  ( ( x e. R. /\ y e. R. ) <-> ( x e. ( ( P. X. P. ) /. ~R ) /\ y e. ( ( P. X. P. ) /. ~R ) ) )
67 66 anbi1i
 |-  ( ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) <-> ( ( x e. ( ( P. X. P. ) /. ~R ) /\ y e. ( ( P. X. P. ) /. ~R ) ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) )
68 67 oprabbii
 |-  { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) } = { <. <. x , y >. , z >. | ( ( x e. ( ( P. X. P. ) /. ~R ) /\ y e. ( ( P. X. P. ) /. ~R ) ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) }
69 62 68 eqtri
 |-  .R = { <. <. x , y >. , z >. | ( ( x e. ( ( P. X. P. ) /. ~R ) /\ y e. ( ( P. X. P. ) /. ~R ) ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) }
70 60 61 69 ovig
 |-  ( ( [ <. A , B >. ] ~R e. ( ( P. X. P. ) /. ~R ) /\ [ <. C , D >. ] ~R e. ( ( P. X. P. ) /. ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R e. _V ) -> ( E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) -> ( [ <. A , B >. ] ~R .R [ <. C , D >. ] ~R ) = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) )
71 51 70 mp3an3
 |-  ( ( [ <. A , B >. ] ~R e. ( ( P. X. P. ) /. ~R ) /\ [ <. C , D >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) -> ( E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) -> ( [ <. A , B >. ] ~R .R [ <. C , D >. ] ~R ) = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) )
72 8 49 71 sylc
 |-  ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( [ <. A , B >. ] ~R .R [ <. C , D >. ] ~R ) = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R )