Metamath Proof Explorer


Theorem 4exbidv

Description: Formula-building rule for four existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995)

Ref Expression
Hypothesis 4exbidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion 4exbidv
|- ( ph -> ( E. x E. y E. z E. w ps <-> E. x E. y E. z E. w ch ) )

Proof

Step Hyp Ref Expression
1 4exbidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 2exbidv
 |-  ( ph -> ( E. z E. w ps <-> E. z E. w ch ) )
3 2 2exbidv
 |-  ( ph -> ( E. x E. y E. z E. w ps <-> E. x E. y E. z E. w ch ) )