Metamath Proof Explorer


Theorem 4exbidv

Description: Formula-building rule for four existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995)

Ref Expression
Hypothesis 4exbidv.1 φ ψ χ
Assertion 4exbidv φ x y z w ψ x y z w χ

Proof

Step Hyp Ref Expression
1 4exbidv.1 φ ψ χ
2 1 2exbidv φ z w ψ z w χ
3 2 2exbidv φ x y z w ψ x y z w χ