Metamath Proof Explorer


Theorem negexsr

Description: Existence of negative signed real. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 2-May-1996) (New usage is discouraged.)

Ref Expression
Assertion negexsr A𝑹x𝑹A+𝑹x=0𝑹

Proof

Step Hyp Ref Expression
1 m1r -1𝑹𝑹
2 mulclsr A𝑹-1𝑹𝑹A𝑹-1𝑹𝑹
3 1 2 mpan2 A𝑹A𝑹-1𝑹𝑹
4 pn0sr A𝑹A+𝑹A𝑹-1𝑹=0𝑹
5 oveq2 x=A𝑹-1𝑹A+𝑹x=A+𝑹A𝑹-1𝑹
6 5 eqeq1d x=A𝑹-1𝑹A+𝑹x=0𝑹A+𝑹A𝑹-1𝑹=0𝑹
7 6 rspcev A𝑹-1𝑹𝑹A+𝑹A𝑹-1𝑹=0𝑹x𝑹A+𝑹x=0𝑹
8 3 4 7 syl2anc A𝑹x𝑹A+𝑹x=0𝑹