Metamath Proof Explorer


Theorem m1r

Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion m1r -1𝑹𝑹

Proof

Step Hyp Ref Expression
1 1pr 1𝑷𝑷
2 addclpr 1𝑷𝑷1𝑷𝑷1𝑷+𝑷1𝑷𝑷
3 1 1 2 mp2an 1𝑷+𝑷1𝑷𝑷
4 opelxpi 1𝑷𝑷1𝑷+𝑷1𝑷𝑷1𝑷1𝑷+𝑷1𝑷𝑷×𝑷
5 1 3 4 mp2an 1𝑷1𝑷+𝑷1𝑷𝑷×𝑷
6 enrex ~𝑹V
7 6 ecelqsi 1𝑷1𝑷+𝑷1𝑷𝑷×𝑷1𝑷1𝑷+𝑷1𝑷~𝑹𝑷×𝑷/~𝑹
8 5 7 ax-mp 1𝑷1𝑷+𝑷1𝑷~𝑹𝑷×𝑷/~𝑹
9 df-m1r -1𝑹=1𝑷1𝑷+𝑷1𝑷~𝑹
10 df-nr 𝑹=𝑷×𝑷/~𝑹
11 8 9 10 3eltr4i -1𝑹𝑹