Metamath Proof Explorer


Theorem caov4

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caov.1 AV
caov.2 BV
caov.3 CV
caov.com xFy=yFx
caov.ass xFyFz=xFyFz
caov.4 DV
Assertion caov4 AFBFCFD=AFCFBFD

Proof

Step Hyp Ref Expression
1 caov.1 AV
2 caov.2 BV
3 caov.3 CV
4 caov.com xFy=yFx
5 caov.ass xFyFz=xFyFz
6 caov.4 DV
7 2 3 6 4 5 caov12 BFCFD=CFBFD
8 7 oveq2i AFBFCFD=AFCFBFD
9 ovex CFDV
10 1 2 9 5 caovass AFBFCFD=AFBFCFD
11 ovex BFDV
12 1 3 11 5 caovass AFCFBFD=AFCFBFD
13 8 10 12 3eqtr4i AFBFCFD=AFCFBFD