Metamath Proof Explorer


Theorem caov411

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caov.1 AV
caov.2 BV
caov.3 CV
caov.com xFy=yFx
caov.ass xFyFz=xFyFz
caov.4 DV
Assertion caov411 AFBFCFD=CFBFAFD

Proof

Step Hyp Ref Expression
1 caov.1 AV
2 caov.2 BV
3 caov.3 CV
4 caov.com xFy=yFx
5 caov.ass xFyFz=xFyFz
6 caov.4 DV
7 1 2 3 4 5 caov31 AFBFC=CFBFA
8 7 oveq1i AFBFCFD=CFBFAFD
9 ovex AFBV
10 9 3 6 5 caovass AFBFCFD=AFBFCFD
11 ovex CFBV
12 11 1 6 5 caovass CFBFAFD=CFBFAFD
13 8 10 12 3eqtr3i AFBFCFD=CFBFAFD