Metamath Proof Explorer


Theorem caovass

Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 26-May-2014)

Ref Expression
Hypotheses caovass.1 AV
caovass.2 BV
caovass.3 CV
caovass.4 xFyFz=xFyFz
Assertion caovass AFBFC=AFBFC

Proof

Step Hyp Ref Expression
1 caovass.1 AV
2 caovass.2 BV
3 caovass.3 CV
4 caovass.4 xFyFz=xFyFz
5 tru
6 4 a1i xVyVzVxFyFz=xFyFz
7 6 caovassg AVBVCVAFBFC=AFBFC
8 5 7 mpan AVBVCVAFBFC=AFBFC
9 1 2 3 8 mp3an AFBFC=AFBFC