Metamath Proof Explorer


Theorem caovass

Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 26-May-2014)

Ref Expression
Hypotheses caovass.1 𝐴 ∈ V
caovass.2 𝐵 ∈ V
caovass.3 𝐶 ∈ V
caovass.4 ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) )
Assertion caovass ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) )

Proof

Step Hyp Ref Expression
1 caovass.1 𝐴 ∈ V
2 caovass.2 𝐵 ∈ V
3 caovass.3 𝐶 ∈ V
4 caovass.4 ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) )
5 tru
6 4 a1i ( ( ⊤ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) )
7 6 caovassg ( ( ⊤ ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) )
8 5 7 mpan ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) )
9 1 2 3 8 mp3an ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) )