Metamath Proof Explorer


Theorem caovass

Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 26-May-2014)

Ref Expression
Hypotheses caovass.1
|- A e. _V
caovass.2
|- B e. _V
caovass.3
|- C e. _V
caovass.4
|- ( ( x F y ) F z ) = ( x F ( y F z ) )
Assertion caovass
|- ( ( A F B ) F C ) = ( A F ( B F C ) )

Proof

Step Hyp Ref Expression
1 caovass.1
 |-  A e. _V
2 caovass.2
 |-  B e. _V
3 caovass.3
 |-  C e. _V
4 caovass.4
 |-  ( ( x F y ) F z ) = ( x F ( y F z ) )
5 tru
 |-  T.
6 4 a1i
 |-  ( ( T. /\ ( x e. _V /\ y e. _V /\ z e. _V ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) )
7 6 caovassg
 |-  ( ( T. /\ ( A e. _V /\ B e. _V /\ C e. _V ) ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) )
8 5 7 mpan
 |-  ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) )
9 1 2 3 8 mp3an
 |-  ( ( A F B ) F C ) = ( A F ( B F C ) )