Step |
Hyp |
Ref |
Expression |
1 |
|
caovcang.1 |
|- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) |
2 |
1
|
ralrimivvva |
|- ( ph -> A. x e. T A. y e. S A. z e. S ( ( x F y ) = ( x F z ) <-> y = z ) ) |
3 |
|
oveq1 |
|- ( x = A -> ( x F y ) = ( A F y ) ) |
4 |
|
oveq1 |
|- ( x = A -> ( x F z ) = ( A F z ) ) |
5 |
3 4
|
eqeq12d |
|- ( x = A -> ( ( x F y ) = ( x F z ) <-> ( A F y ) = ( A F z ) ) ) |
6 |
5
|
bibi1d |
|- ( x = A -> ( ( ( x F y ) = ( x F z ) <-> y = z ) <-> ( ( A F y ) = ( A F z ) <-> y = z ) ) ) |
7 |
|
oveq2 |
|- ( y = B -> ( A F y ) = ( A F B ) ) |
8 |
7
|
eqeq1d |
|- ( y = B -> ( ( A F y ) = ( A F z ) <-> ( A F B ) = ( A F z ) ) ) |
9 |
|
eqeq1 |
|- ( y = B -> ( y = z <-> B = z ) ) |
10 |
8 9
|
bibi12d |
|- ( y = B -> ( ( ( A F y ) = ( A F z ) <-> y = z ) <-> ( ( A F B ) = ( A F z ) <-> B = z ) ) ) |
11 |
|
oveq2 |
|- ( z = C -> ( A F z ) = ( A F C ) ) |
12 |
11
|
eqeq2d |
|- ( z = C -> ( ( A F B ) = ( A F z ) <-> ( A F B ) = ( A F C ) ) ) |
13 |
|
eqeq2 |
|- ( z = C -> ( B = z <-> B = C ) ) |
14 |
12 13
|
bibi12d |
|- ( z = C -> ( ( ( A F B ) = ( A F z ) <-> B = z ) <-> ( ( A F B ) = ( A F C ) <-> B = C ) ) ) |
15 |
6 10 14
|
rspc3v |
|- ( ( A e. T /\ B e. S /\ C e. S ) -> ( A. x e. T A. y e. S A. z e. S ( ( x F y ) = ( x F z ) <-> y = z ) -> ( ( A F B ) = ( A F C ) <-> B = C ) ) ) |
16 |
2 15
|
mpan9 |
|- ( ( ph /\ ( A e. T /\ B e. S /\ C e. S ) ) -> ( ( A F B ) = ( A F C ) <-> B = C ) ) |