Description: Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovcang.1 | |- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) | |
| caovcand.2 | |- ( ph -> A e. T ) | ||
| caovcand.3 | |- ( ph -> B e. S ) | ||
| caovcand.4 | |- ( ph -> C e. S ) | ||
| Assertion | caovcand | |- ( ph -> ( ( A F B ) = ( A F C ) <-> B = C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovcang.1 | |- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) | |
| 2 | caovcand.2 | |- ( ph -> A e. T ) | |
| 3 | caovcand.3 | |- ( ph -> B e. S ) | |
| 4 | caovcand.4 | |- ( ph -> C e. S ) | |
| 5 | id | |- ( ph -> ph ) | |
| 6 | 1 | caovcang | |- ( ( ph /\ ( A e. T /\ B e. S /\ C e. S ) ) -> ( ( A F B ) = ( A F C ) <-> B = C ) ) | 
| 7 | 5 2 3 4 6 | syl13anc | |- ( ph -> ( ( A F B ) = ( A F C ) <-> B = C ) ) |