Description: Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovcang.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) ) | |
| caovcand.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) | ||
| caovcand.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| caovcand.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | ||
| Assertion | caovcand | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ 𝐵 = 𝐶 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovcang.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) ) | |
| 2 | caovcand.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) | |
| 3 | caovcand.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 4 | caovcand.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | |
| 5 | id | ⊢ ( 𝜑 → 𝜑 ) | |
| 6 | 1 | caovcang | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ 𝐵 = 𝐶 ) ) | 
| 7 | 5 2 3 4 6 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |