| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovcang.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑥 𝐹 𝑦 )  =  ( 𝑥 𝐹 𝑧 )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 2 |  | caovcand.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑇 ) | 
						
							| 3 |  | caovcand.3 | ⊢ ( 𝜑  →  𝐵  ∈  𝑆 ) | 
						
							| 4 |  | caovcand.4 | ⊢ ( 𝜑  →  𝐶  ∈  𝑆 ) | 
						
							| 5 |  | caovcanrd.5 | ⊢ ( 𝜑  →  𝐴  ∈  𝑆 ) | 
						
							| 6 |  | caovcanrd.6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 𝐹 𝑦 )  =  ( 𝑦 𝐹 𝑥 ) ) | 
						
							| 7 | 6 5 3 | caovcomd | ⊢ ( 𝜑  →  ( 𝐴 𝐹 𝐵 )  =  ( 𝐵 𝐹 𝐴 ) ) | 
						
							| 8 | 6 5 4 | caovcomd | ⊢ ( 𝜑  →  ( 𝐴 𝐹 𝐶 )  =  ( 𝐶 𝐹 𝐴 ) ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝜑  →  ( ( 𝐴 𝐹 𝐵 )  =  ( 𝐴 𝐹 𝐶 )  ↔  ( 𝐵 𝐹 𝐴 )  =  ( 𝐶 𝐹 𝐴 ) ) ) | 
						
							| 10 | 1 2 3 4 | caovcand | ⊢ ( 𝜑  →  ( ( 𝐴 𝐹 𝐵 )  =  ( 𝐴 𝐹 𝐶 )  ↔  𝐵  =  𝐶 ) ) | 
						
							| 11 | 9 10 | bitr3d | ⊢ ( 𝜑  →  ( ( 𝐵 𝐹 𝐴 )  =  ( 𝐶 𝐹 𝐴 )  ↔  𝐵  =  𝐶 ) ) |