| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovcang.1 |  |-  ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) | 
						
							| 2 |  | caovcand.2 |  |-  ( ph -> A e. T ) | 
						
							| 3 |  | caovcand.3 |  |-  ( ph -> B e. S ) | 
						
							| 4 |  | caovcand.4 |  |-  ( ph -> C e. S ) | 
						
							| 5 |  | caovcanrd.5 |  |-  ( ph -> A e. S ) | 
						
							| 6 |  | caovcanrd.6 |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) | 
						
							| 7 | 6 5 3 | caovcomd |  |-  ( ph -> ( A F B ) = ( B F A ) ) | 
						
							| 8 | 6 5 4 | caovcomd |  |-  ( ph -> ( A F C ) = ( C F A ) ) | 
						
							| 9 | 7 8 | eqeq12d |  |-  ( ph -> ( ( A F B ) = ( A F C ) <-> ( B F A ) = ( C F A ) ) ) | 
						
							| 10 | 1 2 3 4 | caovcand |  |-  ( ph -> ( ( A F B ) = ( A F C ) <-> B = C ) ) | 
						
							| 11 | 9 10 | bitr3d |  |-  ( ph -> ( ( B F A ) = ( C F A ) <-> B = C ) ) |