| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovcan.1 |  |-  C e. _V | 
						
							| 2 |  | caovcan.2 |  |-  ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F z ) -> y = z ) ) | 
						
							| 3 |  | oveq1 |  |-  ( x = A -> ( x F y ) = ( A F y ) ) | 
						
							| 4 |  | oveq1 |  |-  ( x = A -> ( x F C ) = ( A F C ) ) | 
						
							| 5 | 3 4 | eqeq12d |  |-  ( x = A -> ( ( x F y ) = ( x F C ) <-> ( A F y ) = ( A F C ) ) ) | 
						
							| 6 | 5 | imbi1d |  |-  ( x = A -> ( ( ( x F y ) = ( x F C ) -> y = C ) <-> ( ( A F y ) = ( A F C ) -> y = C ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( y = B -> ( A F y ) = ( A F B ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( y = B -> ( ( A F y ) = ( A F C ) <-> ( A F B ) = ( A F C ) ) ) | 
						
							| 9 |  | eqeq1 |  |-  ( y = B -> ( y = C <-> B = C ) ) | 
						
							| 10 | 8 9 | imbi12d |  |-  ( y = B -> ( ( ( A F y ) = ( A F C ) -> y = C ) <-> ( ( A F B ) = ( A F C ) -> B = C ) ) ) | 
						
							| 11 |  | oveq2 |  |-  ( z = C -> ( x F z ) = ( x F C ) ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( z = C -> ( ( x F y ) = ( x F z ) <-> ( x F y ) = ( x F C ) ) ) | 
						
							| 13 |  | eqeq2 |  |-  ( z = C -> ( y = z <-> y = C ) ) | 
						
							| 14 | 12 13 | imbi12d |  |-  ( z = C -> ( ( ( x F y ) = ( x F z ) -> y = z ) <-> ( ( x F y ) = ( x F C ) -> y = C ) ) ) | 
						
							| 15 | 14 | imbi2d |  |-  ( z = C -> ( ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F z ) -> y = z ) ) <-> ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F C ) -> y = C ) ) ) ) | 
						
							| 16 | 1 15 2 | vtocl |  |-  ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F C ) -> y = C ) ) | 
						
							| 17 | 6 10 16 | vtocl2ga |  |-  ( ( A e. S /\ B e. S ) -> ( ( A F B ) = ( A F C ) -> B = C ) ) |