| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovordig.1 |  |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y -> ( z F x ) R ( z F y ) ) ) | 
						
							| 2 | 1 | ralrimivvva |  |-  ( ph -> A. x e. S A. y e. S A. z e. S ( x R y -> ( z F x ) R ( z F y ) ) ) | 
						
							| 3 |  | breq1 |  |-  ( x = A -> ( x R y <-> A R y ) ) | 
						
							| 4 |  | oveq2 |  |-  ( x = A -> ( z F x ) = ( z F A ) ) | 
						
							| 5 | 4 | breq1d |  |-  ( x = A -> ( ( z F x ) R ( z F y ) <-> ( z F A ) R ( z F y ) ) ) | 
						
							| 6 | 3 5 | imbi12d |  |-  ( x = A -> ( ( x R y -> ( z F x ) R ( z F y ) ) <-> ( A R y -> ( z F A ) R ( z F y ) ) ) ) | 
						
							| 7 |  | breq2 |  |-  ( y = B -> ( A R y <-> A R B ) ) | 
						
							| 8 |  | oveq2 |  |-  ( y = B -> ( z F y ) = ( z F B ) ) | 
						
							| 9 | 8 | breq2d |  |-  ( y = B -> ( ( z F A ) R ( z F y ) <-> ( z F A ) R ( z F B ) ) ) | 
						
							| 10 | 7 9 | imbi12d |  |-  ( y = B -> ( ( A R y -> ( z F A ) R ( z F y ) ) <-> ( A R B -> ( z F A ) R ( z F B ) ) ) ) | 
						
							| 11 |  | oveq1 |  |-  ( z = C -> ( z F A ) = ( C F A ) ) | 
						
							| 12 |  | oveq1 |  |-  ( z = C -> ( z F B ) = ( C F B ) ) | 
						
							| 13 | 11 12 | breq12d |  |-  ( z = C -> ( ( z F A ) R ( z F B ) <-> ( C F A ) R ( C F B ) ) ) | 
						
							| 14 | 13 | imbi2d |  |-  ( z = C -> ( ( A R B -> ( z F A ) R ( z F B ) ) <-> ( A R B -> ( C F A ) R ( C F B ) ) ) ) | 
						
							| 15 | 6 10 14 | rspc3v |  |-  ( ( A e. S /\ B e. S /\ C e. S ) -> ( A. x e. S A. y e. S A. z e. S ( x R y -> ( z F x ) R ( z F y ) ) -> ( A R B -> ( C F A ) R ( C F B ) ) ) ) | 
						
							| 16 | 2 15 | mpan9 |  |-  ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( A R B -> ( C F A ) R ( C F B ) ) ) |