Metamath Proof Explorer


Theorem ltsrpr

Description: Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)

Ref Expression
Assertion ltsrpr AB~𝑹<𝑹CD~𝑹A+𝑷D<𝑷B+𝑷C

Proof

Step Hyp Ref Expression
1 enrer ~𝑹Er𝑷×𝑷
2 erdm ~𝑹Er𝑷×𝑷dom~𝑹=𝑷×𝑷
3 1 2 ax-mp dom~𝑹=𝑷×𝑷
4 df-nr 𝑹=𝑷×𝑷/~𝑹
5 ltrelsr <𝑹𝑹×𝑹
6 ltrelpr <𝑷𝑷×𝑷
7 0npr ¬𝑷
8 dmplp dom+𝑷=𝑷×𝑷
9 enrex ~𝑹V
10 df-ltr <𝑹=xy|x𝑹y𝑹zwvux=zw~𝑹y=vu~𝑹z+𝑷u<𝑷w+𝑷v
11 addclpr w𝑷v𝑷w+𝑷v𝑷
12 11 ad2ant2lr z𝑷w𝑷v𝑷u𝑷w+𝑷v𝑷
13 addclpr B𝑷C𝑷B+𝑷C𝑷
14 13 ad2ant2lr A𝑷B𝑷C𝑷D𝑷B+𝑷C𝑷
15 12 14 anim12ci z𝑷w𝑷v𝑷u𝑷A𝑷B𝑷C𝑷D𝑷B+𝑷C𝑷w+𝑷v𝑷
16 15 an4s z𝑷w𝑷A𝑷B𝑷v𝑷u𝑷C𝑷D𝑷B+𝑷C𝑷w+𝑷v𝑷
17 enreceq z𝑷w𝑷A𝑷B𝑷zw~𝑹=AB~𝑹z+𝑷B=w+𝑷A
18 enreceq v𝑷u𝑷C𝑷D𝑷vu~𝑹=CD~𝑹v+𝑷D=u+𝑷C
19 eqcom v+𝑷D=u+𝑷Cu+𝑷C=v+𝑷D
20 18 19 bitrdi v𝑷u𝑷C𝑷D𝑷vu~𝑹=CD~𝑹u+𝑷C=v+𝑷D
21 17 20 bi2anan9 z𝑷w𝑷A𝑷B𝑷v𝑷u𝑷C𝑷D𝑷zw~𝑹=AB~𝑹vu~𝑹=CD~𝑹z+𝑷B=w+𝑷Au+𝑷C=v+𝑷D
22 oveq12 z+𝑷B=w+𝑷Au+𝑷C=v+𝑷Dz+𝑷B+𝑷u+𝑷C=w+𝑷A+𝑷v+𝑷D
23 addcompr u+𝑷B=B+𝑷u
24 23 oveq1i u+𝑷B+𝑷C=B+𝑷u+𝑷C
25 addasspr u+𝑷B+𝑷C=u+𝑷B+𝑷C
26 addasspr B+𝑷u+𝑷C=B+𝑷u+𝑷C
27 24 25 26 3eqtr3i u+𝑷B+𝑷C=B+𝑷u+𝑷C
28 27 oveq2i z+𝑷u+𝑷B+𝑷C=z+𝑷B+𝑷u+𝑷C
29 addasspr z+𝑷u+𝑷B+𝑷C=z+𝑷u+𝑷B+𝑷C
30 addasspr z+𝑷B+𝑷u+𝑷C=z+𝑷B+𝑷u+𝑷C
31 28 29 30 3eqtr4i z+𝑷u+𝑷B+𝑷C=z+𝑷B+𝑷u+𝑷C
32 addcompr v+𝑷A=A+𝑷v
33 32 oveq1i v+𝑷A+𝑷D=A+𝑷v+𝑷D
34 addasspr v+𝑷A+𝑷D=v+𝑷A+𝑷D
35 addasspr A+𝑷v+𝑷D=A+𝑷v+𝑷D
36 33 34 35 3eqtr3i v+𝑷A+𝑷D=A+𝑷v+𝑷D
37 36 oveq2i w+𝑷v+𝑷A+𝑷D=w+𝑷A+𝑷v+𝑷D
38 addasspr w+𝑷v+𝑷A+𝑷D=w+𝑷v+𝑷A+𝑷D
39 addasspr w+𝑷A+𝑷v+𝑷D=w+𝑷A+𝑷v+𝑷D
40 37 38 39 3eqtr4i w+𝑷v+𝑷A+𝑷D=w+𝑷A+𝑷v+𝑷D
41 22 31 40 3eqtr4g z+𝑷B=w+𝑷Au+𝑷C=v+𝑷Dz+𝑷u+𝑷B+𝑷C=w+𝑷v+𝑷A+𝑷D
42 21 41 syl6bi z𝑷w𝑷A𝑷B𝑷v𝑷u𝑷C𝑷D𝑷zw~𝑹=AB~𝑹vu~𝑹=CD~𝑹z+𝑷u+𝑷B+𝑷C=w+𝑷v+𝑷A+𝑷D
43 ovex z+𝑷uV
44 ovex B+𝑷CV
45 ltapr f𝑷x<𝑷yf+𝑷x<𝑷f+𝑷y
46 ovex w+𝑷vV
47 addcompr x+𝑷y=y+𝑷x
48 ovex A+𝑷DV
49 43 44 45 46 47 48 caovord3 B+𝑷C𝑷w+𝑷v𝑷z+𝑷u+𝑷B+𝑷C=w+𝑷v+𝑷A+𝑷Dz+𝑷u<𝑷w+𝑷vA+𝑷D<𝑷B+𝑷C
50 16 42 49 syl6an z𝑷w𝑷A𝑷B𝑷v𝑷u𝑷C𝑷D𝑷zw~𝑹=AB~𝑹vu~𝑹=CD~𝑹z+𝑷u<𝑷w+𝑷vA+𝑷D<𝑷B+𝑷C
51 9 1 4 10 50 brecop A𝑷B𝑷C𝑷D𝑷AB~𝑹<𝑹CD~𝑹A+𝑷D<𝑷B+𝑷C
52 3 4 5 6 7 8 51 brecop2 AB~𝑹<𝑹CD~𝑹A+𝑷D<𝑷B+𝑷C