Metamath Proof Explorer


Theorem caovord3

Description: Ordering law. (Contributed by NM, 29-Feb-1996)

Ref Expression
Hypotheses caovord.1 AV
caovord.2 BV
caovord.3 zSxRyzFxRzFy
caovord2.3 CV
caovord2.com xFy=yFx
caovord3.4 DV
Assertion caovord3 BSCSAFB=CFDARCDRB

Proof

Step Hyp Ref Expression
1 caovord.1 AV
2 caovord.2 BV
3 caovord.3 zSxRyzFxRzFy
4 caovord2.3 CV
5 caovord2.com xFy=yFx
6 caovord3.4 DV
7 1 4 3 2 5 caovord2 BSARCAFBRCFB
8 7 adantr BSCSARCAFBRCFB
9 breq1 AFB=CFDAFBRCFBCFDRCFB
10 8 9 sylan9bb BSCSAFB=CFDARCCFDRCFB
11 6 2 3 caovord CSDRBCFDRCFB
12 11 ad2antlr BSCSAFB=CFDDRBCFDRCFB
13 10 12 bitr4d BSCSAFB=CFDARCDRB