| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							caovord.1 | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							caovord.2 | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 3 | 
							
								
							 | 
							caovord.3 | 
							⊢ ( 𝑧  ∈  𝑆  →  ( 𝑥 𝑅 𝑦  ↔  ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							caovord2.3 | 
							⊢ 𝐶  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							caovord2.com | 
							⊢ ( 𝑥 𝐹 𝑦 )  =  ( 𝑦 𝐹 𝑥 )  | 
						
						
							| 6 | 
							
								
							 | 
							caovord3.4 | 
							⊢ 𝐷  ∈  V  | 
						
						
							| 7 | 
							
								1 4 3 2 5
							 | 
							caovord2 | 
							⊢ ( 𝐵  ∈  𝑆  →  ( 𝐴 𝑅 𝐶  ↔  ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →  ( 𝐴 𝑅 𝐶  ↔  ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							breq1 | 
							⊢ ( ( 𝐴 𝐹 𝐵 )  =  ( 𝐶 𝐹 𝐷 )  →  ( ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 )  ↔  ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylan9bb | 
							⊢ ( ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  ∧  ( 𝐴 𝐹 𝐵 )  =  ( 𝐶 𝐹 𝐷 ) )  →  ( 𝐴 𝑅 𝐶  ↔  ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )  | 
						
						
							| 11 | 
							
								6 2 3
							 | 
							caovord | 
							⊢ ( 𝐶  ∈  𝑆  →  ( 𝐷 𝑅 𝐵  ↔  ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  ∧  ( 𝐴 𝐹 𝐵 )  =  ( 𝐶 𝐹 𝐷 ) )  →  ( 𝐷 𝑅 𝐵  ↔  ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							bitr4d | 
							⊢ ( ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  ∧  ( 𝐴 𝐹 𝐵 )  =  ( 𝐶 𝐹 𝐷 ) )  →  ( 𝐴 𝑅 𝐶  ↔  𝐷 𝑅 𝐵 ) )  |