Metamath Proof Explorer


Theorem caovord3

Description: Ordering law. (Contributed by NM, 29-Feb-1996)

Ref Expression
Hypotheses caovord.1 𝐴 ∈ V
caovord.2 𝐵 ∈ V
caovord.3 ( 𝑧𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) )
caovord2.3 𝐶 ∈ V
caovord2.com ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 )
caovord3.4 𝐷 ∈ V
Assertion caovord3 ( ( ( 𝐵𝑆𝐶𝑆 ) ∧ ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) ) → ( 𝐴 𝑅 𝐶𝐷 𝑅 𝐵 ) )

Proof

Step Hyp Ref Expression
1 caovord.1 𝐴 ∈ V
2 caovord.2 𝐵 ∈ V
3 caovord.3 ( 𝑧𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) )
4 caovord2.3 𝐶 ∈ V
5 caovord2.com ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 )
6 caovord3.4 𝐷 ∈ V
7 1 4 3 2 5 caovord2 ( 𝐵𝑆 → ( 𝐴 𝑅 𝐶 ↔ ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
8 7 adantr ( ( 𝐵𝑆𝐶𝑆 ) → ( 𝐴 𝑅 𝐶 ↔ ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
9 breq1 ( ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) → ( ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
10 8 9 sylan9bb ( ( ( 𝐵𝑆𝐶𝑆 ) ∧ ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) ) → ( 𝐴 𝑅 𝐶 ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
11 6 2 3 caovord ( 𝐶𝑆 → ( 𝐷 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
12 11 ad2antlr ( ( ( 𝐵𝑆𝐶𝑆 ) ∧ ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) ) → ( 𝐷 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
13 10 12 bitr4d ( ( ( 𝐵𝑆𝐶𝑆 ) ∧ ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) ) → ( 𝐴 𝑅 𝐶𝐷 𝑅 𝐵 ) )