Metamath Proof Explorer


Theorem gt0srpr

Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996) (New usage is discouraged.)

Ref Expression
Assertion gt0srpr 0𝑹<𝑹AB~𝑹B<𝑷A

Proof

Step Hyp Ref Expression
1 ltsrpr 1𝑷1𝑷~𝑹<𝑹AB~𝑹1𝑷+𝑷B<𝑷1𝑷+𝑷A
2 df-0r 0𝑹=1𝑷1𝑷~𝑹
3 2 breq1i 0𝑹<𝑹AB~𝑹1𝑷1𝑷~𝑹<𝑹AB~𝑹
4 1pr 1𝑷𝑷
5 ltapr 1𝑷𝑷B<𝑷A1𝑷+𝑷B<𝑷1𝑷+𝑷A
6 4 5 ax-mp B<𝑷A1𝑷+𝑷B<𝑷1𝑷+𝑷A
7 1 3 6 3bitr4i 0𝑹<𝑹AB~𝑹B<𝑷A