Metamath Proof Explorer


Theorem ltapr

Description: Ordering property of addition. Proposition 9-3.5(v) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion ltapr C𝑷A<𝑷BC+𝑷A<𝑷C+𝑷B

Proof

Step Hyp Ref Expression
1 dmplp dom+𝑷=𝑷×𝑷
2 ltrelpr <𝑷𝑷×𝑷
3 0npr ¬𝑷
4 ltaprlem C𝑷A<𝑷BC+𝑷A<𝑷C+𝑷B
5 4 adantr C𝑷B𝑷A𝑷A<𝑷BC+𝑷A<𝑷C+𝑷B
6 olc C+𝑷A<𝑷C+𝑷BC+𝑷B=C+𝑷AC+𝑷A<𝑷C+𝑷B
7 ltaprlem C𝑷B<𝑷AC+𝑷B<𝑷C+𝑷A
8 7 adantr C𝑷B𝑷A𝑷B<𝑷AC+𝑷B<𝑷C+𝑷A
9 ltsopr <𝑷Or𝑷
10 sotric <𝑷Or𝑷B𝑷A𝑷B<𝑷A¬B=AA<𝑷B
11 9 10 mpan B𝑷A𝑷B<𝑷A¬B=AA<𝑷B
12 11 adantl C𝑷B𝑷A𝑷B<𝑷A¬B=AA<𝑷B
13 addclpr C𝑷B𝑷C+𝑷B𝑷
14 addclpr C𝑷A𝑷C+𝑷A𝑷
15 13 14 anim12dan C𝑷B𝑷A𝑷C+𝑷B𝑷C+𝑷A𝑷
16 sotric <𝑷Or𝑷C+𝑷B𝑷C+𝑷A𝑷C+𝑷B<𝑷C+𝑷A¬C+𝑷B=C+𝑷AC+𝑷A<𝑷C+𝑷B
17 9 15 16 sylancr C𝑷B𝑷A𝑷C+𝑷B<𝑷C+𝑷A¬C+𝑷B=C+𝑷AC+𝑷A<𝑷C+𝑷B
18 8 12 17 3imtr3d C𝑷B𝑷A𝑷¬B=AA<𝑷B¬C+𝑷B=C+𝑷AC+𝑷A<𝑷C+𝑷B
19 18 con4d C𝑷B𝑷A𝑷C+𝑷B=C+𝑷AC+𝑷A<𝑷C+𝑷BB=AA<𝑷B
20 6 19 syl5 C𝑷B𝑷A𝑷C+𝑷A<𝑷C+𝑷BB=AA<𝑷B
21 df-or B=AA<𝑷B¬B=AA<𝑷B
22 20 21 imbitrdi C𝑷B𝑷A𝑷C+𝑷A<𝑷C+𝑷B¬B=AA<𝑷B
23 22 com23 C𝑷B𝑷A𝑷¬B=AC+𝑷A<𝑷C+𝑷BA<𝑷B
24 9 2 soirri ¬C+𝑷A<𝑷C+𝑷A
25 oveq2 B=AC+𝑷B=C+𝑷A
26 25 breq2d B=AC+𝑷A<𝑷C+𝑷BC+𝑷A<𝑷C+𝑷A
27 24 26 mtbiri B=A¬C+𝑷A<𝑷C+𝑷B
28 27 pm2.21d B=AC+𝑷A<𝑷C+𝑷BA<𝑷B
29 23 28 pm2.61d2 C𝑷B𝑷A𝑷C+𝑷A<𝑷C+𝑷BA<𝑷B
30 5 29 impbid C𝑷B𝑷A𝑷A<𝑷BC+𝑷A<𝑷C+𝑷B
31 30 3impb C𝑷B𝑷A𝑷A<𝑷BC+𝑷A<𝑷C+𝑷B
32 31 3com13 A𝑷B𝑷C𝑷A<𝑷BC+𝑷A<𝑷C+𝑷B
33 1 2 3 32 ndmovord C𝑷A<𝑷BC+𝑷A<𝑷C+𝑷B