Metamath Proof Explorer


Theorem ltaprlem

Description: Lemma for Proposition 9-3.5(v) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion ltaprlem C𝑷A<𝑷BC+𝑷A<𝑷C+𝑷B

Proof

Step Hyp Ref Expression
1 ltrelpr <𝑷𝑷×𝑷
2 1 brel A<𝑷BA𝑷B𝑷
3 2 simpld A<𝑷BA𝑷
4 ltexpri A<𝑷Bx𝑷A+𝑷x=B
5 addclpr C𝑷A𝑷C+𝑷A𝑷
6 ltaddpr C+𝑷A𝑷x𝑷C+𝑷A<𝑷C+𝑷A+𝑷x
7 addasspr C+𝑷A+𝑷x=C+𝑷A+𝑷x
8 oveq2 A+𝑷x=BC+𝑷A+𝑷x=C+𝑷B
9 7 8 eqtrid A+𝑷x=BC+𝑷A+𝑷x=C+𝑷B
10 9 breq2d A+𝑷x=BC+𝑷A<𝑷C+𝑷A+𝑷xC+𝑷A<𝑷C+𝑷B
11 6 10 imbitrid A+𝑷x=BC+𝑷A𝑷x𝑷C+𝑷A<𝑷C+𝑷B
12 11 expd A+𝑷x=BC+𝑷A𝑷x𝑷C+𝑷A<𝑷C+𝑷B
13 5 12 syl5 A+𝑷x=BC𝑷A𝑷x𝑷C+𝑷A<𝑷C+𝑷B
14 13 com3r x𝑷A+𝑷x=BC𝑷A𝑷C+𝑷A<𝑷C+𝑷B
15 14 rexlimiv x𝑷A+𝑷x=BC𝑷A𝑷C+𝑷A<𝑷C+𝑷B
16 4 15 syl A<𝑷BC𝑷A𝑷C+𝑷A<𝑷C+𝑷B
17 3 16 sylan2i A<𝑷BC𝑷A<𝑷BC+𝑷A<𝑷C+𝑷B
18 17 expd A<𝑷BC𝑷A<𝑷BC+𝑷A<𝑷C+𝑷B
19 18 pm2.43b C𝑷A<𝑷BC+𝑷A<𝑷C+𝑷B