Metamath Proof Explorer


Theorem addcanpr

Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of Gleason p. 123. (Contributed by NM, 9-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion addcanpr A𝑷B𝑷A+𝑷B=A+𝑷CB=C

Proof

Step Hyp Ref Expression
1 addclpr A𝑷B𝑷A+𝑷B𝑷
2 eleq1 A+𝑷B=A+𝑷CA+𝑷B𝑷A+𝑷C𝑷
3 dmplp dom+𝑷=𝑷×𝑷
4 0npr ¬𝑷
5 3 4 ndmovrcl A+𝑷C𝑷A𝑷C𝑷
6 2 5 syl6bi A+𝑷B=A+𝑷CA+𝑷B𝑷A𝑷C𝑷
7 1 6 syl5com A𝑷B𝑷A+𝑷B=A+𝑷CA𝑷C𝑷
8 ltapr A𝑷B<𝑷CA+𝑷B<𝑷A+𝑷C
9 ltapr A𝑷C<𝑷BA+𝑷C<𝑷A+𝑷B
10 8 9 orbi12d A𝑷B<𝑷CC<𝑷BA+𝑷B<𝑷A+𝑷CA+𝑷C<𝑷A+𝑷B
11 10 notbid A𝑷¬B<𝑷CC<𝑷B¬A+𝑷B<𝑷A+𝑷CA+𝑷C<𝑷A+𝑷B
12 11 ad2antrr A𝑷B𝑷A𝑷C𝑷¬B<𝑷CC<𝑷B¬A+𝑷B<𝑷A+𝑷CA+𝑷C<𝑷A+𝑷B
13 ltsopr <𝑷Or𝑷
14 sotrieq <𝑷Or𝑷B𝑷C𝑷B=C¬B<𝑷CC<𝑷B
15 13 14 mpan B𝑷C𝑷B=C¬B<𝑷CC<𝑷B
16 15 ad2ant2l A𝑷B𝑷A𝑷C𝑷B=C¬B<𝑷CC<𝑷B
17 addclpr A𝑷C𝑷A+𝑷C𝑷
18 sotrieq <𝑷Or𝑷A+𝑷B𝑷A+𝑷C𝑷A+𝑷B=A+𝑷C¬A+𝑷B<𝑷A+𝑷CA+𝑷C<𝑷A+𝑷B
19 13 18 mpan A+𝑷B𝑷A+𝑷C𝑷A+𝑷B=A+𝑷C¬A+𝑷B<𝑷A+𝑷CA+𝑷C<𝑷A+𝑷B
20 1 17 19 syl2an A𝑷B𝑷A𝑷C𝑷A+𝑷B=A+𝑷C¬A+𝑷B<𝑷A+𝑷CA+𝑷C<𝑷A+𝑷B
21 12 16 20 3bitr4d A𝑷B𝑷A𝑷C𝑷B=CA+𝑷B=A+𝑷C
22 21 exbiri A𝑷B𝑷A𝑷C𝑷A+𝑷B=A+𝑷CB=C
23 7 22 syld A𝑷B𝑷A+𝑷B=A+𝑷CA+𝑷B=A+𝑷CB=C
24 23 pm2.43d A𝑷B𝑷A+𝑷B=A+𝑷CB=C