Metamath Proof Explorer


Theorem soirri

Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1 ROrS
soi.2 RS×S
Assertion soirri ¬ARA

Proof

Step Hyp Ref Expression
1 soi.1 ROrS
2 soi.2 RS×S
3 sonr ROrSAS¬ARA
4 1 3 mpan AS¬ARA
5 4 adantl ASAS¬ARA
6 2 brel ARAASAS
7 6 con3i ¬ASAS¬ARA
8 5 7 pm2.61i ¬ARA