Metamath Proof Explorer


Theorem erdm

Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erdm RErAdomR=A

Proof

Step Hyp Ref Expression
1 df-er RErARelRdomR=AR-1RRR
2 1 simp2bi RErAdomR=A