Metamath Proof Explorer


Theorem axpre-lttri

Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri . (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 16-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion axpre-lttri ABA<B¬A=BB<A

Proof

Step Hyp Ref Expression
1 elreal Ax𝑹x0𝑹=A
2 elreal By𝑹y0𝑹=B
3 breq1 x0𝑹=Ax0𝑹<y0𝑹A<y0𝑹
4 eqeq1 x0𝑹=Ax0𝑹=y0𝑹A=y0𝑹
5 breq2 x0𝑹=Ay0𝑹<x0𝑹y0𝑹<A
6 4 5 orbi12d x0𝑹=Ax0𝑹=y0𝑹y0𝑹<x0𝑹A=y0𝑹y0𝑹<A
7 6 notbid x0𝑹=A¬x0𝑹=y0𝑹y0𝑹<x0𝑹¬A=y0𝑹y0𝑹<A
8 3 7 bibi12d x0𝑹=Ax0𝑹<y0𝑹¬x0𝑹=y0𝑹y0𝑹<x0𝑹A<y0𝑹¬A=y0𝑹y0𝑹<A
9 breq2 y0𝑹=BA<y0𝑹A<B
10 eqeq2 y0𝑹=BA=y0𝑹A=B
11 breq1 y0𝑹=By0𝑹<AB<A
12 10 11 orbi12d y0𝑹=BA=y0𝑹y0𝑹<AA=BB<A
13 12 notbid y0𝑹=B¬A=y0𝑹y0𝑹<A¬A=BB<A
14 9 13 bibi12d y0𝑹=BA<y0𝑹¬A=y0𝑹y0𝑹<AA<B¬A=BB<A
15 ltsosr <𝑹Or𝑹
16 sotric <𝑹Or𝑹x𝑹y𝑹x<𝑹y¬x=yy<𝑹x
17 15 16 mpan x𝑹y𝑹x<𝑹y¬x=yy<𝑹x
18 ltresr x0𝑹<y0𝑹x<𝑹y
19 vex xV
20 19 eqresr x0𝑹=y0𝑹x=y
21 ltresr y0𝑹<x0𝑹y<𝑹x
22 20 21 orbi12i x0𝑹=y0𝑹y0𝑹<x0𝑹x=yy<𝑹x
23 22 notbii ¬x0𝑹=y0𝑹y0𝑹<x0𝑹¬x=yy<𝑹x
24 17 18 23 3bitr4g x𝑹y𝑹x0𝑹<y0𝑹¬x0𝑹=y0𝑹y0𝑹<x0𝑹
25 1 2 8 14 24 2gencl ABA<B¬A=BB<A