| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elreal | 
							 |-  ( A e. RR <-> E. x e. R. <. x , 0R >. = A )  | 
						
						
							| 2 | 
							
								
							 | 
							elreal | 
							 |-  ( B e. RR <-> E. y e. R. <. y , 0R >. = B )  | 
						
						
							| 3 | 
							
								
							 | 
							breq1 | 
							 |-  ( <. x , 0R >. = A -> ( <. x , 0R >. . <-> A . ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( <. x , 0R >. = A -> ( <. x , 0R >. = <. y , 0R >. <-> A = <. y , 0R >. ) )  | 
						
						
							| 5 | 
							
								
							 | 
							breq2 | 
							 |-  ( <. x , 0R >. = A -> ( <. y , 0R >. . <-> <. y , 0R >.   | 
						
						
							| 6 | 
							
								4 5
							 | 
							orbi12d | 
							 |-  ( <. x , 0R >. = A -> ( ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) <-> ( A = <. y , 0R >. \/ <. y , 0R >.   | 
						
						
							| 7 | 
							
								6
							 | 
							notbid | 
							 |-  ( <. x , 0R >. = A -> ( -. ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) <-> -. ( A = <. y , 0R >. \/ <. y , 0R >.   | 
						
						
							| 8 | 
							
								3 7
							 | 
							bibi12d | 
							 |-  ( <. x , 0R >. = A -> ( ( <. x , 0R >. . <-> -. ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) ) <-> ( A . <-> -. ( A = <. y , 0R >. \/ <. y , 0R >.   | 
						
						
							| 9 | 
							
								
							 | 
							breq2 | 
							 |-  ( <. y , 0R >. = B -> ( A . <-> A   | 
						
						
							| 10 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( <. y , 0R >. = B -> ( A = <. y , 0R >. <-> A = B ) )  | 
						
						
							| 11 | 
							
								
							 | 
							breq1 | 
							 |-  ( <. y , 0R >. = B -> ( <. y , 0R >.  B   | 
						
						
							| 12 | 
							
								10 11
							 | 
							orbi12d | 
							 |-  ( <. y , 0R >. = B -> ( ( A = <. y , 0R >. \/ <. y , 0R >.  ( A = B \/ B   | 
						
						
							| 13 | 
							
								12
							 | 
							notbid | 
							 |-  ( <. y , 0R >. = B -> ( -. ( A = <. y , 0R >. \/ <. y , 0R >.  -. ( A = B \/ B   | 
						
						
							| 14 | 
							
								9 13
							 | 
							bibi12d | 
							 |-  ( <. y , 0R >. = B -> ( ( A . <-> -. ( A = <. y , 0R >. \/ <. y , 0R >.  ( A  -. ( A = B \/ B   | 
						
						
							| 15 | 
							
								
							 | 
							ltsosr | 
							 |-    | 
						
						
							| 16 | 
							
								
							 | 
							sotric | 
							 |-  ( (  ( x  -. ( x = y \/ y   | 
						
						
							| 17 | 
							
								15 16
							 | 
							mpan | 
							 |-  ( ( x e. R. /\ y e. R. ) -> ( x  -. ( x = y \/ y   | 
						
						
							| 18 | 
							
								
							 | 
							ltresr | 
							 |-  ( <. x , 0R >. . <-> x   | 
						
						
							| 19 | 
							
								
							 | 
							vex | 
							 |-  x e. _V  | 
						
						
							| 20 | 
							
								19
							 | 
							eqresr | 
							 |-  ( <. x , 0R >. = <. y , 0R >. <-> x = y )  | 
						
						
							| 21 | 
							
								
							 | 
							ltresr | 
							 |-  ( <. y , 0R >. . <-> y   | 
						
						
							| 22 | 
							
								20 21
							 | 
							orbi12i | 
							 |-  ( ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) <-> ( x = y \/ y   | 
						
						
							| 23 | 
							
								22
							 | 
							notbii | 
							 |-  ( -. ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) <-> -. ( x = y \/ y   | 
						
						
							| 24 | 
							
								17 18 23
							 | 
							3bitr4g | 
							 |-  ( ( x e. R. /\ y e. R. ) -> ( <. x , 0R >. . <-> -. ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) ) )  | 
						
						
							| 25 | 
							
								1 2 8 14 24
							 | 
							2gencl | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A  -. ( A = B \/ B   |