Metamath Proof Explorer


Theorem 2gencl

Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses 2gencl.1 CSxRA=C
2gencl.2 DSyRB=D
2gencl.3 A=Cφψ
2gencl.4 B=Dψχ
2gencl.5 xRyRφ
Assertion 2gencl CSDSχ

Proof

Step Hyp Ref Expression
1 2gencl.1 CSxRA=C
2 2gencl.2 DSyRB=D
3 2gencl.3 A=Cφψ
4 2gencl.4 B=Dψχ
5 2gencl.5 xRyRφ
6 df-rex yRB=DyyRB=D
7 2 6 bitri DSyyRB=D
8 4 imbi2d B=DCSψCSχ
9 df-rex xRA=CxxRA=C
10 1 9 bitri CSxxRA=C
11 3 imbi2d A=CyRφyRψ
12 5 ex xRyRφ
13 10 11 12 gencl CSyRψ
14 13 com12 yRCSψ
15 7 8 14 gencl DSCSχ
16 15 impcom CSDSχ