Metamath Proof Explorer


Theorem distrpr

Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of Gleason p. 124. (Contributed by NM, 2-May-1996) (New usage is discouraged.)

Ref Expression
Assertion distrpr A𝑷B+𝑷C=A𝑷B+𝑷A𝑷C

Proof

Step Hyp Ref Expression
1 distrlem1pr A𝑷B𝑷C𝑷A𝑷B+𝑷CA𝑷B+𝑷A𝑷C
2 distrlem5pr A𝑷B𝑷C𝑷A𝑷B+𝑷A𝑷CA𝑷B+𝑷C
3 1 2 eqssd A𝑷B𝑷C𝑷A𝑷B+𝑷C=A𝑷B+𝑷A𝑷C
4 dmplp dom+𝑷=𝑷×𝑷
5 0npr ¬𝑷
6 dmmp dom𝑷=𝑷×𝑷
7 4 5 6 ndmovdistr ¬A𝑷B𝑷C𝑷A𝑷B+𝑷C=A𝑷B+𝑷A𝑷C
8 3 7 pm2.61i A𝑷B+𝑷C=A𝑷B+𝑷A𝑷C