Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | distrlem5pr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulclpr | |
|
2 | 1 | 3adant3 | |
3 | mulclpr | |
|
4 | df-plp | |
|
5 | addclnq | |
|
6 | 4 5 | genpelv | |
7 | 2 3 6 | 3imp3i2an | |
8 | df-mp | |
|
9 | mulclnq | |
|
10 | 8 9 | genpelv | |
11 | 10 | 3adant2 | |
12 | 11 | anbi2d | |
13 | df-mp | |
|
14 | 13 9 | genpelv | |
15 | 14 | 3adant3 | |
16 | distrlem4pr | |
|
17 | oveq12 | |
|
18 | 17 | eqeq2d | |
19 | eleq1 | |
|
20 | 18 19 | syl6bi | |
21 | 20 | imp | |
22 | 16 21 | syl5ibrcom | |
23 | 22 | exp4b | |
24 | 23 | com3l | |
25 | 24 | exp4b | |
26 | 25 | com23 | |
27 | 26 | rexlimivv | |
28 | 27 | rexlimdvv | |
29 | 28 | com3r | |
30 | 15 29 | sylbid | |
31 | 30 | impd | |
32 | 12 31 | sylbid | |
33 | 32 | rexlimdvv | |
34 | 7 33 | sylbid | |
35 | 34 | ssrdv | |