Metamath Proof Explorer


Theorem distrlem5pr

Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion distrlem5pr A𝑷B𝑷C𝑷A𝑷B+𝑷A𝑷CA𝑷B+𝑷C

Proof

Step Hyp Ref Expression
1 mulclpr A𝑷B𝑷A𝑷B𝑷
2 1 3adant3 A𝑷B𝑷C𝑷A𝑷B𝑷
3 mulclpr A𝑷C𝑷A𝑷C𝑷
4 df-plp +𝑷=x𝑷,y𝑷f|gxhyf=g+𝑸h
5 addclnq g𝑸h𝑸g+𝑸h𝑸
6 4 5 genpelv A𝑷B𝑷A𝑷C𝑷wA𝑷B+𝑷A𝑷CvA𝑷BuA𝑷Cw=v+𝑸u
7 2 3 6 3imp3i2an A𝑷B𝑷C𝑷wA𝑷B+𝑷A𝑷CvA𝑷BuA𝑷Cw=v+𝑸u
8 df-mp 𝑷=w𝑷,v𝑷x|gwhvx=g𝑸h
9 mulclnq g𝑸h𝑸g𝑸h𝑸
10 8 9 genpelv A𝑷C𝑷uA𝑷CfAzCu=f𝑸z
11 10 3adant2 A𝑷B𝑷C𝑷uA𝑷CfAzCu=f𝑸z
12 11 anbi2d A𝑷B𝑷C𝑷vA𝑷BuA𝑷CvA𝑷BfAzCu=f𝑸z
13 df-mp 𝑷=w𝑷,v𝑷f|gwhvf=g𝑸h
14 13 9 genpelv A𝑷B𝑷vA𝑷BxAyBv=x𝑸y
15 14 3adant3 A𝑷B𝑷C𝑷vA𝑷BxAyBv=x𝑸y
16 distrlem4pr A𝑷B𝑷C𝑷xAyBfAzCx𝑸y+𝑸f𝑸zA𝑷B+𝑷C
17 oveq12 v=x𝑸yu=f𝑸zv+𝑸u=x𝑸y+𝑸f𝑸z
18 17 eqeq2d v=x𝑸yu=f𝑸zw=v+𝑸uw=x𝑸y+𝑸f𝑸z
19 eleq1 w=x𝑸y+𝑸f𝑸zwA𝑷B+𝑷Cx𝑸y+𝑸f𝑸zA𝑷B+𝑷C
20 18 19 syl6bi v=x𝑸yu=f𝑸zw=v+𝑸uwA𝑷B+𝑷Cx𝑸y+𝑸f𝑸zA𝑷B+𝑷C
21 20 imp v=x𝑸yu=f𝑸zw=v+𝑸uwA𝑷B+𝑷Cx𝑸y+𝑸f𝑸zA𝑷B+𝑷C
22 16 21 syl5ibrcom A𝑷B𝑷C𝑷xAyBfAzCv=x𝑸yu=f𝑸zw=v+𝑸uwA𝑷B+𝑷C
23 22 exp4b A𝑷B𝑷C𝑷xAyBfAzCv=x𝑸yu=f𝑸zw=v+𝑸uwA𝑷B+𝑷C
24 23 com3l xAyBfAzCv=x𝑸yu=f𝑸zA𝑷B𝑷C𝑷w=v+𝑸uwA𝑷B+𝑷C
25 24 exp4b xAyBfAzCv=x𝑸yu=f𝑸zA𝑷B𝑷C𝑷w=v+𝑸uwA𝑷B+𝑷C
26 25 com23 xAyBv=x𝑸yfAzCu=f𝑸zA𝑷B𝑷C𝑷w=v+𝑸uwA𝑷B+𝑷C
27 26 rexlimivv xAyBv=x𝑸yfAzCu=f𝑸zA𝑷B𝑷C𝑷w=v+𝑸uwA𝑷B+𝑷C
28 27 rexlimdvv xAyBv=x𝑸yfAzCu=f𝑸zA𝑷B𝑷C𝑷w=v+𝑸uwA𝑷B+𝑷C
29 28 com3r A𝑷B𝑷C𝑷xAyBv=x𝑸yfAzCu=f𝑸zw=v+𝑸uwA𝑷B+𝑷C
30 15 29 sylbid A𝑷B𝑷C𝑷vA𝑷BfAzCu=f𝑸zw=v+𝑸uwA𝑷B+𝑷C
31 30 impd A𝑷B𝑷C𝑷vA𝑷BfAzCu=f𝑸zw=v+𝑸uwA𝑷B+𝑷C
32 12 31 sylbid A𝑷B𝑷C𝑷vA𝑷BuA𝑷Cw=v+𝑸uwA𝑷B+𝑷C
33 32 rexlimdvv A𝑷B𝑷C𝑷vA𝑷BuA𝑷Cw=v+𝑸uwA𝑷B+𝑷C
34 7 33 sylbid A𝑷B𝑷C𝑷wA𝑷B+𝑷A𝑷CwA𝑷B+𝑷C
35 34 ssrdv A𝑷B𝑷C𝑷A𝑷B+𝑷A𝑷CA𝑷B+𝑷C