| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulclpr |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 ·P 𝐵 ) ∈ P ) |
| 2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P 𝐵 ) ∈ P ) |
| 3 |
|
mulclpr |
⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P 𝐶 ) ∈ P ) |
| 4 |
|
df-plp |
⊢ +P = ( 𝑥 ∈ P , 𝑦 ∈ P ↦ { 𝑓 ∣ ∃ 𝑔 ∈ 𝑥 ∃ ℎ ∈ 𝑦 𝑓 = ( 𝑔 +Q ℎ ) } ) |
| 5 |
|
addclnq |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 +Q ℎ ) ∈ Q ) |
| 6 |
4 5
|
genpelv |
⊢ ( ( ( 𝐴 ·P 𝐵 ) ∈ P ∧ ( 𝐴 ·P 𝐶 ) ∈ P ) → ( 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∃ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) 𝑤 = ( 𝑣 +Q 𝑢 ) ) ) |
| 7 |
2 3 6
|
3imp3i2an |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∃ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) 𝑤 = ( 𝑣 +Q 𝑢 ) ) ) |
| 8 |
|
df-mp |
⊢ ·P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑔 ∈ 𝑤 ∃ ℎ ∈ 𝑣 𝑥 = ( 𝑔 ·Q ℎ ) } ) |
| 9 |
|
mulclnq |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 ·Q ℎ ) ∈ Q ) |
| 10 |
8 9
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ) |
| 11 |
10
|
3adant2 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ) |
| 12 |
11
|
anbi2d |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ) ↔ ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ) ) |
| 13 |
|
df-mp |
⊢ ·P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑓 ∣ ∃ 𝑔 ∈ 𝑤 ∃ ℎ ∈ 𝑣 𝑓 = ( 𝑔 ·Q ℎ ) } ) |
| 14 |
13 9
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) ) ) |
| 15 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) ) ) |
| 16 |
|
distrlem4pr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |
| 17 |
|
oveq12 |
⊢ ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑣 +Q 𝑢 ) = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ) |
| 18 |
17
|
eqeq2d |
⊢ ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) ↔ 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ) ) |
| 19 |
|
eleq1 |
⊢ ( 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 20 |
18 19
|
biimtrdi |
⊢ ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) |
| 21 |
20
|
imp |
⊢ ( ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ∧ 𝑤 = ( 𝑣 +Q 𝑢 ) ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 22 |
16 21
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ∧ 𝑤 = ( 𝑣 +Q 𝑢 ) ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 23 |
22
|
exp4b |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) |
| 24 |
23
|
com3l |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) |
| 25 |
24
|
exp4b |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) ) ) |
| 26 |
25
|
com23 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) ) ) |
| 27 |
26
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) ) |
| 28 |
27
|
rexlimdvv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) |
| 29 |
28
|
com3r |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) |
| 30 |
15 29
|
sylbid |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) → ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) |
| 31 |
30
|
impd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) |
| 32 |
12 31
|
sylbid |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) |
| 33 |
32
|
rexlimdvv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∃ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 34 |
7 33
|
sylbid |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 35 |
34
|
ssrdv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ⊆ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |